This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297492 #15 Jan 01 2018 04:55:31 %S A297492 33,308,2874,11528,72060,141218,414918,648260,1394328,3528690,4608800, %T A297492 9358298,14113470,17077148,24378288,39426858,60555180,69195410, %U A297492 100714868,127012680,141942878,194693840,237229188,313639470,442561238,520209690,562658408,655294428 %N A297492 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^6*H(4*p-k^2) where H() is the Hurwitz class number and p is the n-th prime. %H A297492 Seiichi Manyama, <a href="/A297492/b297492.txt">Table of n, a(n) for n = 1..1000</a> %H A297492 N. Lygeros, O. Rozier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.html">A new solution to the equation tau(p) == 0 (mod p)</a>, J. Int. Seq. 13 (2010) # 10.7.4. %F A297492 Let b(n) = 5*n^4 - 9*n^2 - 5*n - 1. %F A297492 a(n) = b(prime(n)). %o A297492 (PARI) b(n) = 5*n^4 - 9*n^2 - 5*n - 1; %o A297492 a(n) = b(prime(n)); \\ _Michel Marcus_, Jan 01 2018 %Y A297492 (1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), this sequence (m=6), A297493 (m=8), A297494 (m=10). %Y A297492 Cf. A259825. %K A297492 nonn %O A297492 1,1 %A A297492 _Seiichi Manyama_, Dec 31 2017