cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297503 Number of n X 5 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 2 neighboring 1's.

This page as a plain text file.
%I A297503 #6 Dec 31 2023 10:16:49
%S A297503 12,218,1829,23348,270845,3075264,35919085,414559944,4794512057,
%T A297503 55494787360,641788518693,7424878808114,85894097165753,
%U A297503 993622743583263,11494556544048474,132971604823085666,1538246171030926340
%N A297503 Number of n X 5 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 2 neighboring 1's.
%C A297503 Column 5 of A297506.
%H A297503 R. H. Hardin, <a href="/A297503/b297503.txt">Table of n, a(n) for n = 1..210</a>
%F A297503 Empirical: a(n) = 3*a(n-1) +40*a(n-2) +458*a(n-3) +2079*a(n-4) +7392*a(n-5) -5377*a(n-6) -86832*a(n-7) -163832*a(n-8) +108859*a(n-9) +615980*a(n-10) -108605*a(n-11) -1854189*a(n-12) +509278*a(n-13) +13561851*a(n-14) +28930737*a(n-15) +17333565*a(n-16) -58819317*a(n-17) -189849419*a(n-18) -179930295*a(n-19) +95206355*a(n-20) +312188246*a(n-21) +206553457*a(n-22) +45142449*a(n-23) -114274549*a(n-24) -80784244*a(n-25) -20472387*a(n-26) +50954802*a(n-27) +22152613*a(n-28) +10927600*a(n-29) +4324241*a(n-30) +3214027*a(n-31) +2536913*a(n-32) +4108007*a(n-33) -2976528*a(n-34) -2837327*a(n-35) -788083*a(n-36) +28130*a(n-37) -27293*a(n-38) -77317*a(n-39) -57585*a(n-40) -27063*a(n-41) -4725*a(n-42) +4025*a(n-43) +4394*a(n-44) +955*a(n-45) -271*a(n-46) -10*a(n-47) -37*a(n-48) +12*a(n-49) -a(n-50).
%e A297503 Some solutions for n=4
%e A297503 ..0..0..0..1..0. .0..0..1..1..0. .0..0..0..0..0. .0..0..0..0..1
%e A297503 ..0..0..1..0..1. .0..0..0..0..1. .1..1..0..0..0. .0..0..0..1..0
%e A297503 ..0..0..1..0..1. .1..1..1..0..0. .1..0..0..0..1. .0..1..1..0..0
%e A297503 ..0..1..0..1..0. .0..1..0..0..0. .0..0..0..1..1. .0..0..1..0..0
%Y A297503 Cf. A297506.
%K A297503 nonn
%O A297503 1,1
%A A297503 _R. H. Hardin_, Dec 31 2017