A297506 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 2 neighboring 1s.
1, 2, 1, 4, 10, 1, 7, 31, 29, 1, 12, 68, 110, 87, 1, 21, 218, 314, 531, 280, 1, 37, 729, 1829, 2281, 2534, 876, 1, 65, 2097, 8803, 23348, 14201, 11405, 2735, 1, 114, 6139, 34757, 191192, 270845, 88808, 53175, 8583, 1, 200, 18932, 157673, 1247716, 3624914
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..1..1. .0..0..0..0. .0..0..1..0. .1..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .0..0..0..1. .0..1..0..0. .0..0..0..0 ..1..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..1 ..1..1..0..0. .1..1..0..0. .1..1..0..0. .0..1..1..0. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..242
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
k=3: [order 11]
k=4: [order 18]
k=5: [order 50]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: a(n) = 3*a(n-1) -2*a(n-2) +9*a(n-3) -6*a(n-4) -8*a(n-5)
n=3: [order 10]
n=4: [order 24]
n=5: [order 59]
Comments