This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297571 #8 Jan 07 2018 23:35:34 %S A297571 1,2,3,5,6,10,11,13,15,22,26,29,30,31,33,39,41,47,55,58,62,65,66,78, %T A297571 79,82,87,93,94,101,109,110,113,123,127,130,137,141,145,155,158,165, %U A297571 167,174,179,186,195,202,205,211,218,226,235,237,246,254,257,271,274 %N A297571 Matula-Goebel numbers of fully unbalanced rooted trees. %C A297571 An unlabeled rooted tree is fully unbalanced if either (1) it is a single node, or (2a) every branch has a different number of nodes and (2b) every branch is fully unbalanced also. The number of fully unbalanced trees with n nodes is A032305(n). %C A297571 The first finitary number (A276625) not in this sequence is 143. %e A297571 Sequence of fully unbalanced trees begins: %e A297571 1 o %e A297571 2 (o) %e A297571 3 ((o)) %e A297571 5 (((o))) %e A297571 6 (o(o)) %e A297571 10 (o((o))) %e A297571 11 ((((o)))) %e A297571 13 ((o(o))) %e A297571 15 ((o)((o))) %e A297571 22 (o(((o)))) %e A297571 26 (o(o(o))) %e A297571 29 ((o((o)))) %e A297571 30 (o(o)((o))) %e A297571 31 (((((o))))) %e A297571 33 ((o)(((o)))) %e A297571 39 ((o)(o(o))) %e A297571 41 (((o(o)))) %e A297571 47 (((o)((o)))) %t A297571 nn=2000; %t A297571 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A297571 MGweight[n_]:=If[n===1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>k*MGweight[PrimePi[p]]]]]; %t A297571 imbalQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[UnsameQ@@MGweight/@m,And@@imbalQ/@m]]]; %t A297571 Select[Range[nn],imbalQ] %Y A297571 Cf. A000081, A003238, A004111, A007097, A032305, A061775, A214577, A273873, A276625, A277098, A290689, A290760, A291441, A291442, A291443. %K A297571 nonn %O A297571 1,2 %A A297571 _Gus Wiseman_, Dec 31 2017