cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297580 Number of nX6 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.

This page as a plain text file.
%I A297580 #4 Jan 01 2018 11:10:40
%S A297580 9,93,688,5263,47968,395011,3230902,27481626,229676841,1910165184,
%T A297580 16025802938,134083375797,1119947127057,9371655819528,78394858172957,
%U A297580 655469582914166,5482454528107606,45855352909036892,383489210777394048
%N A297580 Number of nX6 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.
%C A297580 Column 6 of A297582.
%H A297580 R. H. Hardin, <a href="/A297580/b297580.txt">Table of n, a(n) for n = 1..210</a>
%F A297580 Empirical: a(n) = 2*a(n-1) +19*a(n-2) +274*a(n-3) +371*a(n-4) -774*a(n-5) -11136*a(n-6) -18206*a(n-7) +26668*a(n-8) +322423*a(n-9) +399102*a(n-10) -760258*a(n-11) -5477958*a(n-12) -5062444*a(n-13) +11954495*a(n-14) +61297801*a(n-15) +20115817*a(n-16) -133338427*a(n-17) -318716953*a(n-18) -47567293*a(n-19) +866786790*a(n-20) +202855711*a(n-21) +1123114289*a(n-22) -2286997886*a(n-23) +1572016215*a(n-24) -3961782327*a(n-25) +1860280038*a(n-26) -5298119154*a(n-27) +5781884700*a(n-28) +256445384*a(n-29) +5062740269*a(n-30) -3274112499*a(n-31) +84817366*a(n-32) +637130732*a(n-33) +1865545527*a(n-34) -2576673499*a(n-35) -2811843247*a(n-36) +962421764*a(n-37) +1934863310*a(n-38) +1032987214*a(n-39) -1300934567*a(n-40) -764165382*a(n-41) -125297218*a(n-42) +282758482*a(n-43) +46121421*a(n-44) +69777078*a(n-45) -17220358*a(n-46) +31125795*a(n-47) -7036757*a(n-48) -10143494*a(n-49) +4923618*a(n-50) -1144863*a(n-51) -2061946*a(n-52) +1722222*a(n-53) -252310*a(n-54) +116592*a(n-55) +17108*a(n-56) -49896*a(n-57)
%e A297580 Some solutions for n=5
%e A297580 ..1..1..0..1..0..0. .1..0..1..0..1..1. .0..0..0..1..1..0. .1..1..0..1..1..1
%e A297580 ..0..0..0..0..1..0. .0..1..1..0..0..0. .1..0..0..0..0..0. .0..0..0..1..0..1
%e A297580 ..0..0..1..0..0..0. .1..0..0..0..1..1. .0..1..0..0..1..1. .0..0..0..0..0..1
%e A297580 ..0..1..1..0..1..0. .1..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..1..1..1
%e A297580 ..1..0..1..0..0..1. .0..1..0..0..1..1. .0..1..1..0..1..1. .0..0..0..1..0..0
%Y A297580 Cf. A297582.
%K A297580 nonn
%O A297580 1,1
%A A297580 _R. H. Hardin_, Jan 01 2018