cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297586 Number of 5Xn 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.

This page as a plain text file.
%I A297586 #4 Jan 01 2018 11:15:22
%S A297586 1,41,370,1104,5800,47968,284289,1400065,8274627,51959015,297786468,
%T A297586 1672160231,9841739858,58117394971,335596648951,1939477054169,
%U A297586 11329038418743,66061534169620,383352304222950,2227653998802348
%N A297586 Number of 5Xn 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.
%C A297586 Row 5 of A297582.
%H A297586 R. H. Hardin, <a href="/A297586/b297586.txt">Table of n, a(n) for n = 1..210</a>
%F A297586 Empirical: a(n) = a(n-1) +6*a(n-2) +71*a(n-3) +369*a(n-4) +196*a(n-5) -991*a(n-6) -5644*a(n-7) -15505*a(n-8) -2820*a(n-9) +24025*a(n-10) +60587*a(n-11) +217568*a(n-12) -54175*a(n-13) -14794*a(n-14) -548217*a(n-15) -393345*a(n-16) -129180*a(n-17) +465013*a(n-18) +283607*a(n-19) -81586*a(n-20) -19830*a(n-21) -97483*a(n-22) -36466*a(n-23) +229390*a(n-24) +403211*a(n-25) +450685*a(n-26) -16590*a(n-27) -43068*a(n-28) -135274*a(n-29) -185150*a(n-30) -85483*a(n-31) -55526*a(n-32) +32792*a(n-33) +242*a(n-34) +12550*a(n-35) +22312*a(n-36) -2384*a(n-37) -608*a(n-38) -448*a(n-39) -256*a(n-40) -128*a(n-41)
%e A297586 Some solutions for n=6
%e A297586 ..0..1..0..0..1..1. .0..0..0..0..0..0. .0..1..1..1..0..0. .0..0..0..0..1..0
%e A297586 ..1..0..0..0..0..0. .0..0..0..1..1..1. .0..1..0..1..0..0. .0..0..0..1..0..0
%e A297586 ..0..0..1..0..1..0. .0..0..0..1..0..1. .0..0..0..0..0..1. .0..1..0..0..0..1
%e A297586 ..0..0..0..1..1..0. .0..0..0..0..0..0. .0..0..0..1..1..1. .1..0..0..1..1..1
%e A297586 ..0..0..1..0..0..0. .0..0..0..0..0..0. .1..1..0..1..0..0. .0..0..0..0..0..1
%Y A297586 Cf. A297582.
%K A297586 nonn
%O A297586 1,2
%A A297586 _R. H. Hardin_, Jan 01 2018