This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297622 #29 Dec 10 2024 11:59:02 %S A297622 1,1,1,1,2,2,1,3,7,7,1,4,16,42,42,1,5,30,149,429,429,1,6,50,406,2394, %T A297622 7436,7436,1,7,77,938,9698,65910,218348,218348,1,8,112,1932,31920, %U A297622 403572,3096496,10850216,10850216,1,9,156,3654,90576,1931325,29020904,247587252,911835460,911835460 %N A297622 Triangle read by rows: a(n,k) is the number of k X n matrices which are the first k rows of an alternating sign matrix of size n. %C A297622 Comments: An alternating sign matrix of size n is an n X n matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign. If k < n, we relax the condition on the columns slightly, and require that %C A297622 (a) If a column is not all zeros, the first nonzero entry is 1; %C A297622 (b) The nonzero entries in each column alternate in sign. %C A297622 The second reference gives a sequence of partially ordered sets Phi_n such that the alternating sign matrices of size n are in bijection with the maximal chains of Phi_n. This sequence gives the number of saturated chains in Phi_n which begin at the root vertex and end at any vertex of height k. %D A297622 D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999 %H A297622 Robert G. Wilson v, <a href="/A297622/b297622.txt">Table of n, a(n) for n = 0..104</a> %H A297622 Sara Billey and Matjaž Konvalinka, <a href="https://arxiv.org/abs/2412.03236">Generalized rank functions and quilts of alternating sign matrices</a>, arXiv:2412.03236 [math.CO], 2024. See p. 33. %H A297622 Paul Terwilliger, <a href="https://arxiv.org/abs/1710.04733">A Poset Phi_n whose maximal chains are in bijection with the n by n alternating sign matrices</a>, arXiv:1710.04733 [math.CO], 2017. %F A297622 a(n,0) = 1; %F A297622 a(n,1) = n; %F A297622 a(n,n-1) = a(n,n) = A005130(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!. %e A297622 a(3,3)=7 because there are seven alternating sign matrices of size 3. Six of these are the permutation matrices, and the seventh is the matrix ((0,1,0),(1,-1,1),(0,1,0)). %e A297622 a(n,0)=1 because there is only one possible n X 0 matrix: the empty matrix. %e A297622 a(4,4)=42 because there are 42 4 X 4 alternating sign matrices. If we look only at the first two rows in each of the 42 4 X 4 alternating sign matrices, we get 16 distinct 2 X 4 matrices, and so a(4,2)=16. The 16 2 X 4 matrices are %e A297622 {{0, 0, 0, 1}, {0, 0, 1, 0}}, %e A297622 {{0, 0, 0, 1}, {0, 1, 0, 0}}, %e A297622 {{0, 0, 0, 1}, {1, 0, 0, 0}}, %e A297622 {{0, 0, 1, 0}, {0, 0, 0, 1}}, %e A297622 {{0, 0, 1, 0}, {0, 1, 0, 0}}, %e A297622 {{0, 0, 1, 0}, {1, 0, 0, 0}}, %e A297622 {{0, 1, 0, 0}, {0, 0, 0, 1}}, %e A297622 {{0, 1, 0, 0}, {0, 0, 1, 0}}, %e A297622 {{0, 1, 0, 0}, {1, 0, 0, 0}}, %e A297622 {{1, 0, 0, 0}, {0, 0, 0, 1}}, %e A297622 {{1, 0, 0, 0}, {0, 0, 1, 0}}, %e A297622 {{1, 0, 0, 0}, {0, 1, 0, 0}}, %e A297622 {{0, 0, 1, 0}, {0, 1, -1, 1}}, %e A297622 {{0, 0, 1, 0}, {1, 0, -1, 1}}, %e A297622 {{0, 1, 0, 0}, {1, -1, 0, 1}}, %e A297622 {{0, 1, 0, 0}, {1, -1, 1, 0}}. %e A297622 Triangle begins: %e A297622 ============================================================================================= %e A297622 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A297622 ---|----------------------------------------------------------------------------------------- %e A297622 _0 | 1 %e A297622 _1 | 1 1 %e A297622 _2 | 1 2 2 %e A297622 _3 | 1 3 7 7 %e A297622 _4 | 1 4 16 42 42 %e A297622 _5 | 1 5 30 149 429 429 %e A297622 _6 | 1 6 50 406 2394 7436 7436 %e A297622 _7 | 1 7 77 938 9698 65910 218348 218348 %e A297622 _8 | 1 8 112 1932 31920 403572 3096496 10850216 10850216 %e A297622 _9 | 1 9 156 3654 90576 1931325 29020904 247587252 911835460 911835460 %e A297622 10 | 1 10 210 6468 229680 7722110 205140540 3586953760 33631201864 129534272700 129534272700 %e A297622 ... %t A297622 (* First we compute the Hasse diagram for Terwilliger's poset as a directed graph object. *) %t A297622 ToAlternatingSignList[list_] := %t A297622 Module[{s = 1}, %t A297622 Table[If[list[[k]] == 0, 0, (s = -s); -s], {k, 1, Length[list]}]] %t A297622 AllAlternatingSignRows[n_] := %t A297622 AllAlternatingSignRows[ %t A297622 n] = (ToAlternatingSignList /@ %t A297622 Select[Table[IntegerDigits[q, 2, n], {q, 0, 2^n - 1}], %t A297622 OddQ[Total[#]] &]) %t A297622 output[vertex_] := %t A297622 Select[Table[ %t A297622 vertex + li, {li, AllAlternatingSignRows[Length[vertex]]}], %t A297622 And[Min[#] >= 0, Max[#] <= 1] &] %t A297622 elist[vertex_] := ((vertex \[DirectedEdge] #) & /@ output[vertex]) %t A297622 ASMPoset[n_] := %t A297622 ASMPoset[n] = %t A297622 Graph[Flatten[ %t A297622 Table[elist[IntegerDigits[k, 2, n]], {k, 0, 2^n - 1}]]] %t A297622 (*Now we compute the number of paths of length k starting at the root vertex.*) %t A297622 ASMPosetAdjacencyMatrix[n_] := Normal[AdjacencyMatrix[ASMPoset[n]]] %t A297622 Table[Total /@ %t A297622 First /@ NestList[ASMPosetAdjacencyMatrix[n].# &, %t A297622 IdentityMatrix[2^n], n], {n, 1, 10}] %Y A297622 Cf. A005130. %K A297622 nonn,tabl %O A297622 0,5 %A A297622 _Ben Branman_, Jan 01 2018