cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297628 Seidel's triangle generating A006846 read by rows, T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 5, 7, 7, 1, 20, 34, 41, 41, 1, 137, 253, 335, 376, 376, 1, 1478, 2818, 3905, 4657, 5033, 5033, 1, 22925, 44371, 62999, 77722, 87788, 92821, 92821, 1, 481448, 939970, 1354121, 1705273, 1978703, 2164345, 2257166, 2257166
Offset: 0

Views

Author

Peter Luschny, Jan 02 2018

Keywords

Examples

			Triangle starts:
0: [1]
1: [1,       1]
2: [1,       2,       2]
3: [1,       5,       7,        7]
4: [1,      20,      34,       41,       41]
5: [1,     137,     253,      335,      376,      376]
6: [1,    1478,    2818,     3905,     4657,     5033,     5033]
7: [1,   22925,   44371,    62999,    77722,    87788,    92821,    92821]
8: [1,  481448,  939970,  1354121,  1705273,  1978703,  2164345,  2257166,  2257166]
		

Crossrefs

T(n,1) = A297629(n).
T(n,n) = A006846(n).
Row sums are A297630.

Programs

  • Julia
    function  A297628Triangle(len::Int)
        A = fill(BigInt(0), len+1); A[1] = 1
        for n in 1:len
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2: 1:n A[k] += A[k-1] end
            println(A[1:n])
        end
    end
    println(A297628Triangle(9))

A297630 Row sums of A297628.

Original entry on oeis.org

1, 2, 5, 20, 137, 1478, 22925, 481448, 13138193, 451749962, 19104365333, 974417603132, 58981977530777, 4179837144348686, 342799255549127837, 32212592211380729168, 3438255899105307857441, 413670348773363088131474, 55722273751954119897519653
Offset: 0

Views

Author

Peter Luschny, Jan 02 2018

Keywords

Comments

Apparently (apart from offset) the same as A297629, essentially column 1 of A297628 - R. J. Mathar, Jan 09 2018

Crossrefs

Programs

  • Julia
    function A297630List(len::Int)
        R = Array{BigInt}(len)
        A = fill(BigInt(0), len+1); A[1] = 1
        for n in 1:len
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2: 1:n A[k] += A[k-1] end
            R[n] = sum(A[1:n])
        end
        return R
    end
    println(A297630List(19))
Showing 1-2 of 2 results.