cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297672 Array with four columns read by rows: T(n,k) = number of n step walks in the first octant on a square lattice with last step being right (k=1), left (k=2), up (k=3) or down (k=4).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 0, 3, 1, 1, 1, 6, 6, 6, 2, 20, 10, 10, 10, 50, 50, 50, 25, 175, 105, 105, 105, 490, 490, 490, 294, 1764, 1176, 1176, 1176, 5292, 5292, 5292, 3528, 19404, 13860, 13860
Offset: 1

Views

Author

Roger Ford, Jan 02 2018

Keywords

Comments

Sum_{k=1..4} T(n,k) = A005558(n).
For n >= 1, the ratio of the numbers of right or up last steps to left or down last steps is floor((n+2)/2): floor(n/2). - Roger Ford, Oct 28 2019

Examples

			k=    1    2    3    4    total
N   right left up   down  walks
1     1    0    0    0    =1
2     1    1    1    0    =3
3     3    1    1    1    =6
4     6    6    6    2    =20
There are 6 walks of 4 steps in the octant with the last step right. T(4,1)=6 RRRR, RRLR, RLRR, RUDR, RURR, RRUR.
		

Crossrefs

Formula

n=1: T(1,1)=1, T(1,2)=0, T(1,3)=0, T(1,4)=0;
n>1: T(n,1) = C(n,floor(n/2))*C(n-1,floor((n-1)/2)) - C(n,floor((n-1)/2))*C(n-1,floor((n-2)/2));
T(n,2) = T(n,3) = C(n-1,floor(n/2)-1)*C(n,floor(n/2)-1)/floor(n/2);
n odd: T(n,4) = T(n,2);
n even: T(n,4) = T(n,2)*((n/2-1)/(n/2+1));
For n > 1, T(n,2) = T(n,3) = A001263(n,floor(n/2)).