cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297682 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 0, 1 or 4 neighboring 1s.

Original entry on oeis.org

2, 4, 4, 7, 11, 8, 13, 29, 33, 16, 24, 80, 150, 98, 32, 44, 219, 629, 742, 291, 64, 81, 597, 2790, 4633, 3744, 865, 128, 149, 1632, 12110, 32911, 34872, 18840, 2570, 256, 274, 4459, 52889, 221420, 401678, 260924, 94891, 7637, 512, 504, 12181, 230406, 1519630
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2018

Keywords

Comments

Table starts
...2.....4.......7........13.........24...........44.............81
...4....11......29........80........219..........597...........1632
...8....33.....150.......629.......2790........12110..........52889
..16....98.....742......4633......32911.......221420........1519630
..32...291....3744.....34872.....401678......4202440.......45865837
..64...865...18840....260924....4870764.....78957968.....1368968852
.128..2570...94891...1955750...59210634...1487819051....41030621948
.256..7637..477850..14651847..719647644..28013761161..1229127412701
.512.22693.2406649.109783269.8748946600.527589764007.36837288191422

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .1..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0
..0..0..1..1. .0..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..0
..0..1..0..0. .0..0..1..0. .1..0..0..0. .1..0..0..1. .0..0..0..0
..0..1..0..0. .1..0..1..0. .0..1..0..0. .0..0..0..0. .0..0..1..1
		

Crossrefs

Column 1 is A000079.
Column 2 is A282990.
Row 1 is A000073(n+3).
Row 2 is A124861(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) +8*a(n-3) -5*a(n-4) -30*a(n-5) +17*a(n-6)
k=4: [order 16]
k=5: [order 30]
k=6: [order 57]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3)
n=2: a(n) = a(n-1) +3*a(n-2) +4*a(n-3) +2*a(n-4)
n=3: [order 8]
n=4: [order 17]
n=5: [order 41]