A297682 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 0, 1 or 4 neighboring 1s.
2, 4, 4, 7, 11, 8, 13, 29, 33, 16, 24, 80, 150, 98, 32, 44, 219, 629, 742, 291, 64, 81, 597, 2790, 4633, 3744, 865, 128, 149, 1632, 12110, 32911, 34872, 18840, 2570, 256, 274, 4459, 52889, 221420, 401678, 260924, 94891, 7637, 512, 504, 12181, 230406, 1519630
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .1..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0 ..0..0..1..1. .0..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..0 ..0..1..0..0. .0..0..1..0. .1..0..0..0. .1..0..0..1. .0..0..0..0 ..0..1..0..0. .1..0..1..0. .0..1..0..0. .0..0..0..0. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) +8*a(n-3) -5*a(n-4) -30*a(n-5) +17*a(n-6)
k=4: [order 16]
k=5: [order 30]
k=6: [order 57]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3)
n=2: a(n) = a(n-1) +3*a(n-2) +4*a(n-3) +2*a(n-4)
n=3: [order 8]
n=4: [order 17]
n=5: [order 41]
Comments