A297703 The Genocchi triangle read by rows, T(n,k) for n>=0 and 0<=k<=n.
1, 1, 1, 2, 3, 3, 8, 14, 17, 17, 56, 104, 138, 155, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569, 5410688, 10623104, 15448416, 19716064, 23281432, 26031912
Offset: 0
Examples
The triangle starts: 0: [ 1] 1: [ 1, 1] 2: [ 2, 3, 3] 3: [ 8, 14, 17, 17] 4: [ 56, 104, 138, 155, 155] 5: [ 608, 1160, 1608, 1918, 2073, 2073] 6: [ 9440, 18272, 25944, 32008, 36154, 38227, 38227] 7: [198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569]
Crossrefs
Programs
-
Julia
function A297703Triangle(len::Int) A = fill(BigInt(0), len+2); A[2] = 1 for n in 2:len+1 for k in n:-1:2 A[k] += A[k+1] end for k in 2: 1:n A[k] += A[k-1] end println(A[2:n]) end end println(A297703Triangle(9))
-
Python
from functools import cache @cache def T(n): # returns row n if n == 0: return [1] row = [0] + T(n - 1) + [0] for k in range(n, 0, -1): row[k] += row[k + 1] for k in range(2, n + 2): row[k] += row[k - 1] return row[1:] for n in range(9): print(T(n)) # Peter Luschny, Jun 03 2022