This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297706 #11 Jan 07 2018 23:49:06 %S A297706 1,2,4,3,5,11,9,7,12,6,8,13,14,16,15,18,10,19,20,22,17,24,26,21,28,30, %T A297706 29,38,36,31,40,32,23,42,34,25,44,48,27,41,33,35,39,43,37,51,45,49,53, %U A297706 47,63,57,59,55,67,61,69,77,65,75,73,81,87,79,91,71,83 %N A297706 Lexicographically earliest sequence of distinct positive terms such that for any n > 0, a(n) XOR a(n+1) XOR a(n+2) is prime (where XOR denotes the bitwise XOR operator). %C A297706 See A297879 for the corresponding prime numbers. %C A297706 This sequence has connections with A076990: here we combine triples of successive terms with the XOR operator, there with the usual addition operator. %C A297706 The sequence alternates long runs of odd terms and long runs with periodic parity (even, even, odd); changes from one type of run to the other occur near terms such that a(n) XOR a(n+1) XOR a(n+2) = 2; see illustration in Links section. %H A297706 Rémy Sigrist, <a href="/A297706/b297706.txt">Table of n, a(n) for n = 1..10000</a> %H A297706 Rémy Sigrist, <a href="/A297706/a297706.gp.txt">PARI program for A297706</a> %H A297706 Rémy Sigrist, <a href="/A297706/a297706.png">Colored scatterplot of the first 25000 terms</a> (where the color is function of the parity of a(n)) %e A297706 The first terms of the sequence are: %e A297706 n a(n) a(n) XOR a(n+1) XOR a(n+2) %e A297706 -- ---- -------------------------- %e A297706 1 1 7 %e A297706 2 2 5 %e A297706 3 4 2 %e A297706 4 3 13 %e A297706 5 5 7 %e A297706 6 11 5 %e A297706 7 9 2 %e A297706 8 7 13 %e A297706 9 12 2 %e A297706 10 6 3 %e A297706 11 8 11 %e A297706 12 13 19 %e A297706 13 14 17 %e A297706 14 16 13 %e A297706 15 15 23 %e A297706 16 18 11 %e A297706 17 10 13 %e A297706 18 19 17 %e A297706 19 20 19 %e A297706 20 22 31 %o A297706 (PARI) See Links section. %Y A297706 Cf. A076990, A297879. %K A297706 nonn,base %O A297706 1,2 %A A297706 _Rémy Sigrist_, Jan 03 2018