cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297709 Table read by antidiagonals: Let b be the number of digits in the binary expansion of n. Then T(n,k) is the k-th odd prime p such that the binary digits of n match the primality of the b consecutive odd numbers beginning with p (or 0 if no such k-th prime exists).

Original entry on oeis.org

3, 5, 7, 7, 13, 3, 11, 19, 5, 23, 13, 23, 11, 31, 7, 17, 31, 17, 47, 13, 5, 19, 37, 29, 53, 19, 11, 3, 23, 43, 41, 61, 37, 17, 0, 89, 29, 47, 59, 73, 43, 29, 0, 113, 23, 31, 53, 71, 83, 67, 41, 0, 139, 31, 19, 37, 61, 101, 89, 79, 59, 0, 181, 47, 43, 7, 41, 67
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 15 2018

Keywords

Comments

For each n >= 1, row n is the union of rows 2n and 2n+1.
Rows with no nonzero terms: 15, 21, 23, 28, 30, 31, ...
Rows whose only nonzero term is 3: 7, 14, 29, 59, 118, 237, 475, 950, 1901, 3802, 7604, ...
Rows whose only nonzero term is 5: 219, 438, 877, 1754, 3508, 7017, 14035, ...
For j = 2, 3, 4, ..., respectively, the first row whose only nonzero term is prime(j) is 7, 219, 2921, ...; is there such a row for every odd prime?

Examples

			13 = 1101_2, so row n=13 lists the odd primes p such that the four consecutive odd numbers p, p+2, p+4, and p+6 are prime, prime, composite, and prime, respectively; these are the terms of A022004.
14 = 1110_2, so row n=14 lists the odd primes p such that p, p+2, p+4, and p+6 are prime, prime, prime, and composite, respectively; since there is only one such prime (namely, 3), there is no such 2nd, 3rd, 4th, etc. prime, so the terms in row 14 are {3, 0, 0, 0, ...}.
15 = 1111_2, so row n=15 would list the odd primes p such that p, p+2, p+4, and p+6 are all prime, but since no such prime exists, every term in row 15 is 0.
Table begins:
  n in base|                    k                   |  OEIS
  ---------+----------------------------------------+sequence
  10     2 |   1    2    3    4    5    6    7    8 | number
  =========+========================================+========
   1     1 |   3    5    7   11   13   17   19   23 | A065091
   2    10 |   7   13   19   23   31   37   43   47 | A049591
   3    11 |   3    5   11   17   29   41   59   71 | A001359
   4   100 |  23   31   47   53   61   73   83   89 | A124582
   5   101 |   7   13   19   37   43   67   79   97 | A029710
   6   110 |   5   11   17   29   41   59   71  101 | A001359*
   7   111 |   3    0    0    0    0    0    0    0 |
   8  1000 |  89  113  139  181  199  211  241  283 | A083371
   9  1001 |  23   31   47   53   61   73   83  131 | A031924
  10  1010 |  19   43   79  109  127  163  229  313 |
  11  1011 |   7   13   37   67   97  103  193  223 | A022005
  12  1100 |  29   59   71  137  149  179  197  239 | A210360*
  13  1101 |   5   11   17   41  101  107  191  227 | A022004
  14  1110 |   3    0    0    0    0    0    0    0 |
  15  1111 |   0    0    0    0    0    0    0    0 |
  16 10000 | 113  139  181  199  211  241  283  293 | A124584
  17 10001 |  89  359  389  401  449  479  491  683 | A031926
  18 10010 |  31   47   61   73   83  151  157  167 |
  19 10011 |  23   53  131  173  233  263  563  593 | A049438
  20 10100 |  19   43   79  109  127  163  229  313 |
  21 10101 |   0    0    0    0    0    0    0    0 |
  22 10110 |   7   13   37   67   97  103  193  223 | A022005
  23 10111 |   0    0    0    0    0    0    0    0 |
  24 11000 | 137  179  197  239  281  419  521  617 |
  25 11001 |  29   59   71  149  269  431  569  599 | A049437*
  26 11010 |  17   41  107  227  311  347  461  641 |
  27 11011 |   5   11  101  191  821 1481 1871 2081 | A007530
  28 11100 |   0    0    0    0    0    0    0    0 |
  29 11101 |   3    0    0    0    0    0    0    0 |
  30 11110 |   0    0    0    0    0    0    0    0 |
  31 11111 |   0    0    0    0    0    0    0    0 |
*other than the referenced sequence's initial term 3
.
Alternative version of table:
.
  n in base|primal-|               k              |  OEIS
  ---------+  ity  +------------------------------+  seq.
  10     2 |pattern|   1    2    3    4    5    6 | number
  =========+=======+==============================+========
   1     1 | p     |   3    5    7   11   13   17 | A065091
   2    10 | pc    |   7   13   19   23   31   37 | A049591
   3    11 | pp    |   3    5   11   17   29   41 | A001359
   4   100 | pcc   |  23   31   47   53   61   73 | A124582
   5   101 | pcp   |   7   13   19   37   43   67 | A029710
   6   110 | ppc   |   5   11   17   29   41   59 | A001359*
   7   111 | ppp   |   3    0    0    0    0    0 |
   8  1000 | pccc  |  89  113  139  181  199  211 | A083371
   9  1001 | pccp  |  23   31   47   53   61   73 | A031924
  10  1010 | pcpc  |  19   43   79  109  127  163 |
  11  1011 | pcpp  |   7   13   37   67   97  103 | A022005
  12  1100 | ppcc  |  29   59   71  137  149  179 | A210360*
  13  1101 | ppcp  |   5   11   17   41  101  107 | A022004
  14  1110 | pppc  |   3    0    0    0    0    0 |
  15  1111 | pppp  |   0    0    0    0    0    0 |
  16 10000 | pcccc | 113  139  181  199  211  241 | A124584
  17 10001 | pcccp |  89  359  389  401  449  479 | A031926
  18 10010 | pccpc |  31   47   61   73   83  151 |
  19 10011 | pccpp |  23   53  131  173  233  263 | A049438
  20 10100 | pcpcc |  19   43   79  109  127  163 |
  21 10101 | pcpcp |   0    0    0    0    0    0 |
  22 10110 | pcppc |   7   13   37   67   97  103 | A022005
  23 10111 | pcppp |   0    0    0    0    0    0 |
  24 11000 | ppccc | 137  179  197  239  281  419 |
  25 11001 | ppccp |  29   59   71  149  269  431 | A049437*
  26 11010 | ppcpc |  17   41  107  227  311  347 |
  27 11011 | ppcpp |   5   11  101  191  821 1481 | A007530
  28 11100 | pppcc |   0    0    0    0    0    0 |
  29 11101 | pppcp |   3    0    0    0    0    0 |
  30 11110 | ppppc |   0    0    0    0    0    0 |
  31 11111 | ppppp |   0    0    0    0    0    0 |
.
     *other than the referenced sequence's initial term 3
		

Crossrefs