A297720 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1, 2 or 4 neighboring 1s.
1, 2, 1, 4, 10, 1, 7, 34, 29, 1, 12, 83, 145, 87, 1, 21, 258, 523, 747, 280, 1, 37, 865, 2717, 4212, 4090, 876, 1, 65, 2651, 14462, 36981, 34319, 21116, 2735, 1, 114, 8041, 68919, 336653, 512354, 268630, 110551, 8583, 1, 200, 25114, 332306, 2699832, 8103241
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .1..1..0..0. .1..0..1..0. .0..0..1..0. .0..0..1..1 ..0..0..1..1. .0..1..0..0. .0..1..1..0. .0..0..0..1. .0..0..1..0 ..0..1..0..0. .0..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..0..0 ..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..1..0..0. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
k=3: [order 13]
k=4: [order 42]
k=5: [order 87]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: a(n) = 4*a(n-1) -3*a(n-2) +3*a(n-3) -2*a(n-4) -24*a(n-5) +24*a(n-6)
n=3: [order 18]
n=4: [order 51]
Comments