cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297740 The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.

This page as a plain text file.
%I A297740 #49 Mar 18 2024 19:48:49
%S A297740 1,9,41,129,321,625,997,1413,1885,2425,3033,3709,4453,5265,6145,7093,
%T A297740 8109,9193,10345,11565,12853,14209,15633,17125,18685,20313,22009,
%U A297740 23773,25605,27505,29473,31509,33613,35785,38025,40333,42709,45153,47665,50245,52893
%N A297740 The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.
%H A297740 Colin Barker, <a href="/A297740/b297740.txt">Table of n, a(n) for n = 0..1000</a>
%H A297740 R. J. Mathar, <a href="/A297740/a297740_1.pdf">Fairy chess leaper minimum moves on the infinite chessboard</a>, (2018).
%H A297740 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A297740 a(n) = 34*n^2 + 30*n + 9 for n >= 6.
%F A297740 From _Colin Barker_, Jan 05 2018: (Start)
%F A297740 G.f.: (1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3.
%F A297740 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9. (End)
%t A297740 LinearRecurrence[{3, -3, 1}, {1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425}, 50] (* _Paolo Xausa_, Mar 17 2024 *)
%o A297740 (PARI) Vec((1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3 + O(x^40)) \\ _Colin Barker_, Jan 07 2018
%Y A297740 Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297741 (3,4)-leaper.
%Y A297740 Partial sums of A018839.
%Y A297740 Cf. A253974, A254129, A254459.
%K A297740 nonn,easy
%O A297740 0,2
%A A297740 _R. J. Mathar_, Jan 05 2018