This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297765 #4 Jan 05 2018 19:02:45 %S A297765 1,7,186,1181,7081,73352,759243,6588378,57693478,533724767,4922696680, %T A297765 44623406796,405152379143,3698469278671,33742294413274, %U A297765 307321953516448,2799705826422060,25518781471597350,232579566114463247 %N A297765 Number of 4Xn 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 2, 3 or 4 neighboring 1s. %C A297765 Row 4 of A297762. %H A297765 R. H. Hardin, <a href="/A297765/b297765.txt">Table of n, a(n) for n = 1..210</a> %F A297765 Empirical: a(n) = 11*a(n-1) -19*a(n-2) +32*a(n-3) +335*a(n-4) -5302*a(n-5) +4877*a(n-6) +41245*a(n-7) -59158*a(n-8) +30223*a(n-9) +57197*a(n-10) -1020454*a(n-11) +862104*a(n-12) +1838401*a(n-13) -1356530*a(n-14) +2889366*a(n-15) -4139453*a(n-16) -2799504*a(n-17) +1786979*a(n-18) -6970729*a(n-19) -1083380*a(n-20) +15771978*a(n-21) +4518181*a(n-22) +3914585*a(n-23) +906744*a(n-24) -18794319*a(n-25) -6388380*a(n-26) -2837951*a(n-27) +4295886*a(n-28) +8890326*a(n-29) +7281990*a(n-30) +3637924*a(n-31) -6921628*a(n-32) -9675860*a(n-33) -591149*a(n-34) +5705591*a(n-35) +1517078*a(n-36) +690601*a(n-37) -452385*a(n-38) -849043*a(n-39) -331785*a(n-40) -330259*a(n-41) +105500*a(n-42) +119342*a(n-43) -10526*a(n-44) +21152*a(n-45) +4084*a(n-46) -10053*a(n-47) +508*a(n-48) +1494*a(n-49) -228*a(n-50) -132*a(n-51) +4*a(n-52) %e A297765 Some solutions for n=6 %e A297765 ..1..1..1..1..0..0. .1..1..0..0..0..0. .1..1..0..1..1..1. .1..1..1..0..1..0 %e A297765 ..0..1..0..0..1..1. .1..1..0..1..1..0. .0..1..1..0..1..0. .0..1..0..1..1..1 %e A297765 ..0..1..1..1..1..0. .1..0..0..1..1..1. .1..1..0..0..1..1. .1..1..0..1..0..0 %e A297765 ..0..0..1..0..0..0. .0..1..1..1..1..0. .1..1..1..1..1..1. .0..1..1..1..1..0 %Y A297765 Cf. A297762. %K A297765 nonn %O A297765 1,2 %A A297765 _R. H. Hardin_, Jan 05 2018