A297771 Number of distinct runs in base-3 digits of n.
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 2
Offset: 1
Examples
1040 in base-3: 1,1,0,2,1,1,2; five runs, of which 3 are distinct, so that a(1040) = 3.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
b = 3; s[n_] := Length[Union[Split[IntegerDigits[n, b]]]] Table[s[n], {n, 1, 200}]
-
PARI
apply( {A297771(n)=my(r=Vec(0, 3), c); while(n, my(d=n%3, L=valuation(n+if(d>1, 1, d, n+1), 3)); !bittest(r[1+d], L) && c++ && r[1+d] += 1<
M. F. Hasler, Jul 13 2024 -
Python
from itertools import groupby from sympy.ntheory import digits def A297771(n): return len(set(map(lambda x:tuple(x[1]),groupby(digits(n,3)[1:])))) # Chai Wah Wu, Jul 13 2024
Formula
a(n) << log n. In particular, a(n) <= log(n)/log(3) + 1. - Charles R Greathouse IV, Jul 13 2024
Comments