A297772 Number of distinct runs in base-4 digits of n.
1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 2, 3, 3, 3, 2, 1, 2
Offset: 1
Examples
123456 in base-4: 1,3,2,0,2,1,0,0,0; seven runs, of which 5 are distinct, so that a(123456) = 5.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
b = 4; s[n_] := Length[Union[Split[IntegerDigits[n, b]]]] Table[s[n], {n, 1, 200}]
-
PARI
apply( {A297772(n)=my(r=Vec(0, 4), c); while(n, my(d=bitand(n,3), L=valuation(n+if(d==3, 1, d==2, n\2+1, d, n<<1+1), if(d==2, 2, 4))); d==2 && L\/=2; !bittest(r[1+d], L) && c++ && r[1+d] += 1<
>=2*L); c}, [0..99]) \\ M. F. Hasler, Jul 15 2024 -
Python
from itertools import groupby from sympy.ntheory import digits def A297772(n): return len(set(map(lambda x:tuple(x[1]),groupby(sympydigits(n,4)[1:])))) # Chai Wah Wu, Jul 13 2024
Comments