This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297793 #19 Oct 04 2023 03:52:29 %S A297793 1,2,2,10,2,18,2,18,29,18,2,72,2,18,56,82,2,72,2,146,56,18,2,200,127, %T A297793 18,56,146,2,322,2,146,56,18,252,416,2,18,56,396,2,504,2,146,306,18,2, %U A297793 632,345,268,56,146,2,504,252,832,56,18,2,882,2,18,742,658,252 %N A297793 a(n) = Sum_{d|n} min(d, n/d)^3. %H A297793 Seiichi Manyama, <a href="/A297793/b297793.txt">Table of n, a(n) for n = 1..10000</a> %H A297793 Henri Cohen, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002311860">Sums involving the values at negative integers of L-functions of quadratic characters</a>, Math. Ann. 217 (1975), no. 3, 271-285. MR0382192 (52 #3080). %F A297793 a(n) = - Sum_{k in Z} (k^2-n)*H(4*n-k^2) where H() is the Hurwitz class number. %t A297793 a[n_] := DivisorSum[n, Min[#, n/#]^3 &]; Array[a, 65] (* _Amiram Eldar_, Oct 04 2023*) %o A297793 (PARI) {a(n) = sumdiv(n, d, min(d, n/d)^3)} %Y A297793 Sum_{d|n} min(d, n/d)^k: A117004 (k=1), A297792 (k=2), this sequence (k=3), A297794 (k=4), A297795 (k=5). %Y A297793 Cf. A259825. %K A297793 nonn %O A297793 1,2 %A A297793 _Seiichi Manyama_, Jan 06 2018