A297831 Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
1, 2, 8, 11, 14, 17, 22, 24, 29, 31, 36, 38, 43, 45, 48, 51, 56, 60, 62, 65, 68, 73, 77, 79, 82, 85, 90, 94, 96, 99, 102, 107, 111, 113, 118, 120, 125, 127, 130, 133, 138, 140, 143, 148, 152, 154, 159, 161, 166, 168, 171, 174, 179, 181, 184, 189, 193, 195
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 8. Complement: (b(n)) = (3,4,5,6,7,9,10,12,13,15,16,18,19,...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n - 1; j = 1; While[j < 100, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k Table[a[n], {n, 0, k}] (* A297831 *)
Comments