This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297838 #11 May 01 2018 03:01:05 %S A297838 1,4,5,7,9,12,15,16,17,20,21,25,27,28,29,33,34,35,36,39,45,46,47,48, %T A297838 52,56,57,58,60,61,62,64,65,67,74,75,76,78,79,80,81,87,88,94,95,97, %U A297838 100,102,103,104,105,106,107,108,110,114,117,123,124,125,126,127 %N A297838 Solution (a(n)) of the system of 3 complementary equations in Comments. %C A297838 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A297838 a(n) = least new; %C A297838 b(n) = least new > = a(n) + n + 1; %C A297838 c(n) = a(n) + b(n); %C A297838 where "least new k" means the least positive integer not yet placed. %C A297838 *** %C A297838 The sequences a,b,c partition the positive integers. %C A297838 *** %C A297838 Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A297838 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)) %C A297838 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1. %C A297838 (The same limits occur in A298868 and A297469.) %H A297838 Clark Kimberling, <a href="/A297838/b297838.txt">Table of n, a(n) for n = 0..1000</a> %e A297838 n: 0 1 2 3 4 5 6 7 8 9 10 %e A297838 a: 1 4 5 7 9 12 15 16 17 20 21 %e A297838 b: 2 6 8 11 14 19 22 24 26 30 32 %e A297838 c: 3 10 13 18 23 31 37 40 43 50 53 %t A297838 z=200; %t A297838 mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]); %t A297838 a={1};b={2};c={3};n=0; %t A297838 Do[{n++; %t A297838 AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]], %t A297838 AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]], %t A297838 AppendTo[c,Last[a]+Last[b]]},{z}]; %t A297838 Take[a,100] (* A297838 *) %t A297838 Take[b,100] (* A298170 *) %t A297838 Take[c,100] (* A298418 *) %t A297838 (* _Peter J. C. Moses_, Apr 23 2018 *) %Y A297838 Cf. A299634, A298868, A297469, A298170, A298418. %K A297838 nonn,easy %O A297838 0,2 %A A297838 _Clark Kimberling_, Apr 25 2018