cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297844 a(n) = Sum_{d|n} max(d, n/d)^5.

This page as a plain text file.
%I A297844 #32 Jan 13 2025 01:32:44
%S A297844 1,64,486,2080,6250,16038,33614,67584,118341,206250,322102,515264,
%T A297844 742586,1109262,1525000,2163712,2839714,3912786,4952198,6606250,
%U A297844 8201816,10629366,12872686,16504000,19534375,24505338,28815912,35529998,41022298,50334302
%N A297844 a(n) = Sum_{d|n} max(d, n/d)^5.
%C A297844  If p is a prime, then 2*p^5 belongs to this sequence. Conjecture: The converse is true. - _Alexandra Hercilia Pereira Silva_, Oct 04 2022
%H A297844 Seiichi Manyama, <a href="/A297844/b297844.txt">Table of n, a(n) for n = 1..10000</a>
%F A297844 a(n) + A297795(n) = 2*A001160(n).
%F A297844 Sum_{k=1..n} a(k) ~ (zeta(6)/3) * n^6. - _Amiram Eldar_, Jan 12 2025
%t A297844 f[n_] := Block[{d = Divisors@ n}, Plus @@ (Max[#, n/#]^5 & /@ d)]; Array[f, 32] (* _Robert G. Wilson v_, Jan 07 2018 *)
%o A297844 (PARI) {a(n) = sumdiv(n, d, max(d, n/d)^5)}
%Y A297844 Sum_{d|n} max(d, n/d)^k: A117003 (k=1), A297841 (k=2), A297842 (k=3), A297843 (k=4), this sequence (k=5).
%Y A297844 Cf. A001160, A013664, A297795.
%K A297844 nonn
%O A297844 1,2
%A A297844 _Seiichi Manyama_, Jan 07 2018