A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------------ 1| 1 1 1 1 1 1 1 1 1 1 -> A000012 2| 1 2 3 4 5 6 7 8 9 10 -> A000027 3| 1 3 5 9 7 15 11 27 25 21 -> A003961 4| 1 4 9 16 25 36 49 64 81 100 -> A000290 5| 1 5 7 25 11 35 13 125 49 55 -> A357852 6| 1 6 15 36 35 90 77 216 225 210 -> A191002 7| 1 7 11 49 13 77 17 343 121 91 8| 1 8 27 64 125 216 343 512 729 1000 -> A000578 9| 1 9 25 81 49 225 121 729 625 441 10| 1 10 21 100 55 210 91 1000 441 550 From _Peter Munn_, Jun 24 2021: (Start) The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials: n f(n) n f(n) 1 0 16 4 2 1 17 x^6 3 x 21 x^3 + x 4 2 25 2x^2 5 x^2 27 3x 6 x + 1 35 x^3 + x^2 7 x^3 36 2x + 2 8 3 49 2x^3 9 2x 55 x^4 + x^2 10 x^2 + 1 64 6 11 x^4 77 x^4 + x^3 12 x + 2 81 4x 13 x^5 90 x^2 + 2x + 1 15 x^2 + x 91 x^5 + x^3 (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..5050
- Encyclopedia of Mathematics, Additive arithmetic function
- Encyclopedia of Mathematics, Isomorphism
- Eric Weisstein's World of Mathematics, Distributive
- Eric Weisstein's World of Mathematics, Ring.
- Wikipedia, Polynomial ring
Crossrefs
Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Programs
-
PARI
T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))
Formula
T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
(End)
Extensions
New name from Peter Munn, Jul 17 2021
Comments