This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297855 #4 Jan 07 2018 10:39:36 %S A297855 3,23,21,53,45,81,130,186,203,313,533,737,1132,1722,2282,3719,5672, %T A297855 8216,12567,18631,27784,41385,63526,95485,142633,216863,319973,486432, %U A297855 733798,1104890,1675037,2510078,3780690,5691817,8606387,13011832,19628345 %N A297855 Number of nX5 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero. %C A297855 Column 5 of A297858. %H A297855 R. H. Hardin, <a href="/A297855/b297855.txt">Table of n, a(n) for n = 1..210</a> %F A297855 Empirical: a(n) = 3*a(n-3) +3*a(n-4) +3*a(n-5) +2*a(n-6) -a(n-7) -11*a(n-8) -16*a(n-9) -23*a(n-10) -11*a(n-11) +16*a(n-12) +25*a(n-13) +41*a(n-14) +4*a(n-15) -45*a(n-16) -25*a(n-17) -28*a(n-18) +90*a(n-19) +162*a(n-20) +128*a(n-21) +113*a(n-22) -175*a(n-23) -215*a(n-24) -261*a(n-25) -113*a(n-26) +119*a(n-27) +260*a(n-28) +151*a(n-29) +142*a(n-30) -421*a(n-31) -438*a(n-32) -840*a(n-33) -376*a(n-34) +213*a(n-35) +1246*a(n-36) +1426*a(n-37) +587*a(n-38) -1027*a(n-39) -1652*a(n-40) -938*a(n-41) +731*a(n-42) +1379*a(n-43) +1500*a(n-44) +927*a(n-45) +785*a(n-46) +387*a(n-47) -935*a(n-48) -2457*a(n-49) -3071*a(n-50) -1858*a(n-51) +1321*a(n-52) +3166*a(n-53) +2512*a(n-54) -460*a(n-55) -3218*a(n-56) -2132*a(n-57) +448*a(n-58) +2336*a(n-59) +1574*a(n-60) -478*a(n-61) -478*a(n-62) +520*a(n-63) +948*a(n-64) -112*a(n-65) -1672*a(n-66) -1288*a(n-67) +92*a(n-68) +1192*a(n-69) +992*a(n-70) +16*a(n-71) -488*a(n-72) -392*a(n-73) -64*a(n-74) +96*a(n-75) +64*a(n-76) for n>81 %e A297855 Some solutions for n=7 %e A297855 ..0..1..1..1..1. .0..1..0..1..1. .0..1..1..1..0. .0..1..0..1..1 %e A297855 ..1..0..0..0..0. .0..1..0..0..1. .1..0..0..0..1. .1..0..0..1..0 %e A297855 ..0..1..0..0..1. .1..1..1..1..1. .0..0..1..0..0. .0..1..1..1..0 %e A297855 ..1..1..1..1..1. .0..0..1..0..0. .1..1..0..1..1. .1..0..1..0..1 %e A297855 ..0..0..1..0..0. .1..0..1..0..1. .1..0..1..0..1. .1..0..1..0..1 %e A297855 ..1..0..1..0..1. .0..1..0..0..1. .1..1..0..1..1. .1..0..1..0..1 %e A297855 ..1..0..0..0..1. .1..1..0..1..0. .0..0..1..0..0. .1..0..1..0..1 %Y A297855 Cf. A297858. %K A297855 nonn %O A297855 1,1 %A A297855 _R. H. Hardin_, Jan 07 2018