A297871 Number of nX3 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
0, 3, 0, 3, 0, 3, 6, 23, 68, 205, 572, 1553, 4208, 11405, 30988, 84553, 231176, 632915, 1734004, 4751591, 13021550, 35685855, 97797264, 268015939, 734511376, 2012982445, 5516772882, 15119337301, 41436399090, 113561805901, 311231201784
Offset: 1
Keywords
Examples
All solutions for n=7 ..0..0..1. .0..0..1. .0..0..0. .0..1..1. .0..1..1. .0..0..0 ..0..1..1. .0..1..1. .1..0..1. .0..0..1. .0..0..1. .1..0..1 ..0..1..0. .0..1..0. .1..1..1. .1..0..1. .1..0..1. .1..1..1 ..1..0..0. .1..0..0. .1..0..0. .1..1..0. .1..1..0. .0..0..1 ..0..1..0. .1..1..1. .0..1..0. .0..0..0. .1..0..1. .0..1..0 ..0..1..1. .1..0..1. .0..1..1. .0..1..0. .0..0..1. .1..1..0 ..0..0..1. .0..0..0. .0..0..1. .1..1..1. .0..1..1. .1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A297876.
Formula
Empirical: a(n) = 2*a(n-1) +5*a(n-2) -3*a(n-3) -15*a(n-4) -9*a(n-5) +24*a(n-6) +29*a(n-7) -a(n-8) -36*a(n-9) -67*a(n-10) -23*a(n-11) +49*a(n-12) +43*a(n-13) +14*a(n-14) +3*a(n-15) -4*a(n-16) -2*a(n-17) for n>18
Comments