cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A297870 Number of nX2 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 3, 2, 11, 13, 34, 65, 123, 266, 499, 1037, 2042, 4089, 8219, 16338, 32827, 65485, 131090, 262193, 524155, 1048794, 2096899, 4194509, 8388586, 16776937, 33555099, 67107874, 134218827, 268434701, 536870786, 1073743393, 2147480443, 4294971818
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 2 of A297876.

Examples

			Some solutions for n=7
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0
..0..0. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0. .1..0. .1..0. .1..0
..0..0. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1
..0..0. .1..1. .1..0. .1..1. .1..0. .1..0. .1..1. .0..0. .0..1. .0..0
..0..0. .1..1. .0..0. .0..0. .0..0. .0..0. .1..1. .0..0. .0..0. .0..0
..1..1. .1..1. .1..0. .0..1. .0..1. .1..1. .0..0. .0..0. .1..0. .1..1
..1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .0..0. .0..0. .1..1. .1..1
		

Crossrefs

Cf. A297876.

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)

A297871 Number of nX3 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 6, 23, 68, 205, 572, 1553, 4208, 11405, 30988, 84553, 231176, 632915, 1734004, 4751591, 13021550, 35685855, 97797264, 268015939, 734511376, 2012982445, 5516772882, 15119337301, 41436399090, 113561805901, 311231201784
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 3 of A297876.

Examples

			All solutions for n=7
..0..0..1. .0..0..1. .0..0..0. .0..1..1. .0..1..1. .0..0..0
..0..1..1. .0..1..1. .1..0..1. .0..0..1. .0..0..1. .1..0..1
..0..1..0. .0..1..0. .1..1..1. .1..0..1. .1..0..1. .1..1..1
..1..0..0. .1..0..0. .1..0..0. .1..1..0. .1..1..0. .0..0..1
..0..1..0. .1..1..1. .0..1..0. .0..0..0. .1..0..1. .0..1..0
..0..1..1. .1..0..1. .0..1..1. .0..1..0. .0..0..1. .1..1..0
..0..0..1. .0..0..0. .0..0..1. .1..1..1. .0..1..1. .1..0..0
		

Crossrefs

Cf. A297876.

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-2) -3*a(n-3) -15*a(n-4) -9*a(n-5) +24*a(n-6) +29*a(n-7) -a(n-8) -36*a(n-9) -67*a(n-10) -23*a(n-11) +49*a(n-12) +43*a(n-13) +14*a(n-14) +3*a(n-15) -4*a(n-16) -2*a(n-17) for n>18

A297872 Number of nX4 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 2, 3, 10, 20, 68, 185, 561, 1588, 4814, 14322, 42658, 127606, 381695, 1142358, 3419569, 10243325, 30685488, 91937645, 275496007, 825602377, 2474298468, 7415685876, 22226227933, 66617647655, 199673303891, 598488700247
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 4 of A297876.

Examples

			Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0
..1..1..0..0. .1..1..0..0. .0..1..0..1. .1..0..1..0. .1..0..0..0
..1..0..1..0. .1..0..1..0. .1..0..0..1. .1..0..1..0. .1..0..1..0
..0..0..1..1. .0..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..1..0
..1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..0. .1..0..1..0
..1..1..0..0. .1..1..0..0. .0..0..1..1. .0..0..0..0. .1..1..0..0
		

Crossrefs

Cf. A297876.

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) -2*a(n-3) -5*a(n-4) +3*a(n-5) +36*a(n-7) -57*a(n-8) +81*a(n-9) +32*a(n-10) -6*a(n-11) -102*a(n-12) -12*a(n-13) -182*a(n-14) -286*a(n-15) +443*a(n-16) -410*a(n-17) +222*a(n-18) -755*a(n-19) +2597*a(n-20) -997*a(n-21) +788*a(n-22) -95*a(n-23) +2600*a(n-24) -2288*a(n-25) -2866*a(n-26) -1124*a(n-27) +2189*a(n-28) -1950*a(n-29) -3437*a(n-30) +2422*a(n-31) +115*a(n-32) +1748*a(n-33) +1283*a(n-34) +1645*a(n-35) +38*a(n-36) +415*a(n-37) -862*a(n-38) +338*a(n-39) -437*a(n-40) -1030*a(n-41) -286*a(n-42) -150*a(n-43) +337*a(n-44) -83*a(n-45) +41*a(n-46) -33*a(n-47) +71*a(n-48) +14*a(n-49) +8*a(n-50) -6*a(n-51) -4*a(n-52) for n>53

A297873 Number of nX5 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 11, 0, 20, 80, 231, 579, 2437, 7507, 26278, 91622, 316406, 1091518, 3805139, 13166620, 45743807, 158968332, 552175778, 1918002602, 6665774473, 23158033370, 80468332463, 279615402191, 971597706573, 3376114511226, 11731585710994
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 5 of A297876.

Examples

			Some solutions for n=7
..0..0..1..0..0. .0..0..1..0..0. .0..0..0..1..1. .0..1..1..1..0
..0..1..1..1..0. .0..1..1..1..0. .0..1..1..0..1. .0..0..1..0..0
..0..1..0..1..0. .1..0..0..0..1. .1..1..0..0..1. .0..1..1..0..1
..0..0..1..0..0. .0..1..1..1..0. .1..0..1..1..0. .1..0..0..1..1
..1..1..1..1..1. .1..0..0..0..1. .0..0..1..0..0. .1..1..1..0..1
..0..1..1..0..1. .0..1..1..1..0. .1..0..1..0..1. .1..0..1..0..1
..0..0..1..0..0. .0..0..1..0..0. .1..1..0..1..1. .0..0..0..1..1
		

Crossrefs

Cf. A297876.

A297874 Number of nX6 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 13, 3, 68, 231, 887, 3307, 13910, 55501, 228947, 947582, 3930953, 16243210, 67305782, 278635282, 1154097789, 4780226279, 19802856358, 82032779562, 339845971291, 1407890373170, 5832655811595, 24163797280825, 100107714077232
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 6 of A297876.

Examples

			Some solutions for n=7
..0..0..0..0..1..1. .0..0..1..1..1..1. .0..0..1..0..0..1. .0..0..1..0..1..1
..0..1..1..0..0..1. .0..1..0..0..0..1. .0..1..1..0..1..1. .0..1..0..1..0..1
..0..1..0..1..0..1. .1..0..1..1..0..1. .1..0..0..0..0..1. .0..1..1..0..0..1
..0..1..0..1..1..1. .1..0..1..0..1..1. .0..1..1..1..1..0. .0..1..0..1..0..1
..0..1..1..0..0..1. .1..0..1..0..0..0. .0..0..0..0..0..1. .0..1..0..1..0..1
..0..1..0..1..1..0. .1..0..1..0..1..0. .1..1..1..0..1..1. .1..0..1..0..0..1
..0..0..1..0..0..0. .1..1..0..1..1..1. .1..1..1..0..0..1. .1..1..0..0..1..1
		

Crossrefs

Cf. A297876.

A297875 Number of n X 7 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 34, 6, 185, 579, 3307, 13778, 69160, 325394, 1617897, 7900112, 39099845, 191624353, 944384511, 4643953567, 22870757049, 112585762631, 554562217248, 2730604865872, 13448526185881, 66230043593237, 326180992906896
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 7 of A297876.

Examples

			Some solutions for n=7
..0..0..0..0..1..0..0. .0..0..0..0..0..1..1. .0..0..0..1..1..1..0
..0..1..1..1..0..1..0. .0..1..1..1..0..0..1. .0..1..1..0..1..0..0
..1..1..0..0..1..1..0. .1..0..0..0..1..0..1. .1..0..0..1..0..1..1
..1..0..1..1..0..1..0. .1..0..1..1..0..1..1. .1..1..0..1..0..1..0
..1..0..1..0..0..1..0. .1..0..1..1..1..0..1. .0..0..0..0..1..0..0
..1..0..0..1..1..0..1. .0..1..0..1..0..1..0. .1..0..0..1..0..0..1
..1..1..0..0..0..1..1. .0..0..1..0..1..0..0. .1..1..0..1..1..1..1
		

Crossrefs

Cf. A297876.

A297869 Number of n X n 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 10, 80, 887, 13778, 428609, 15589226, 918365908
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Diagonal of A297876.

Examples

			Some solutions for n=7
..0..1..1..1..0..1..1. .0..0..1..1..0..0..1. .0..0..1..1..1..0..0
..0..0..1..0..1..0..1. .1..0..0..1..0..1..1. .1..0..0..1..0..1..0
..1..1..1..0..1..0..0. .1..1..1..0..0..0..1. .1..1..1..1..0..1..0
..1..0..1..0..1..1..0. .0..0..0..1..0..0..0. .0..0..0..0..0..1..0
..1..0..0..1..0..0..1. .0..1..1..0..1..1..0. .0..1..1..1..1..0..0
..0..1..1..1..1..1..0. .1..0..0..0..0..0..1. .1..0..0..0..0..0..1
..0..0..0..0..0..0..0. .1..1..1..1..1..1..1. .1..1..1..1..1..1..1
		

Crossrefs

Cf. A297876.
Showing 1-7 of 7 results.