A297870
Number of nX2 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 1, 3, 2, 11, 13, 34, 65, 123, 266, 499, 1037, 2042, 4089, 8219, 16338, 32827, 65485, 131090, 262193, 524155, 1048794, 2096899, 4194509, 8388586, 16776937, 33555099, 67107874, 134218827, 268434701, 536870786, 1073743393, 2147480443, 4294971818
Offset: 1
Some solutions for n=7
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0
..0..0. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0. .1..0. .1..0. .1..0
..0..0. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .1..1
..0..0. .1..1. .1..0. .1..1. .1..0. .1..0. .1..1. .0..0. .0..1. .0..0
..0..0. .1..1. .0..0. .0..0. .0..0. .0..0. .1..1. .0..0. .0..0. .0..0
..1..1. .1..1. .1..0. .0..1. .0..1. .1..1. .0..0. .0..0. .1..0. .1..1
..1..1. .1..1. .1..1. .1..1. .1..1. .1..1. .0..0. .0..0. .1..1. .1..1
A297871
Number of nX3 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 3, 0, 3, 0, 3, 6, 23, 68, 205, 572, 1553, 4208, 11405, 30988, 84553, 231176, 632915, 1734004, 4751591, 13021550, 35685855, 97797264, 268015939, 734511376, 2012982445, 5516772882, 15119337301, 41436399090, 113561805901, 311231201784
Offset: 1
All solutions for n=7
..0..0..1. .0..0..1. .0..0..0. .0..1..1. .0..1..1. .0..0..0
..0..1..1. .0..1..1. .1..0..1. .0..0..1. .0..0..1. .1..0..1
..0..1..0. .0..1..0. .1..1..1. .1..0..1. .1..0..1. .1..1..1
..1..0..0. .1..0..0. .1..0..0. .1..1..0. .1..1..0. .0..0..1
..0..1..0. .1..1..1. .0..1..0. .0..0..0. .1..0..1. .0..1..0
..0..1..1. .1..0..1. .0..1..1. .0..1..0. .0..0..1. .1..1..0
..0..0..1. .0..0..0. .0..0..1. .1..1..1. .0..1..1. .1..0..0
A297872
Number of nX4 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 2, 3, 10, 20, 68, 185, 561, 1588, 4814, 14322, 42658, 127606, 381695, 1142358, 3419569, 10243325, 30685488, 91937645, 275496007, 825602377, 2474298468, 7415685876, 22226227933, 66617647655, 199673303891, 598488700247
Offset: 1
Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0
..1..1..0..0. .1..1..0..0. .0..1..0..1. .1..0..1..0. .1..0..0..0
..1..0..1..0. .1..0..1..0. .1..0..0..1. .1..0..1..0. .1..0..1..0
..0..0..1..1. .0..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..1..0
..1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..0. .1..0..1..0
..1..1..0..0. .1..1..0..0. .0..0..1..1. .0..0..0..0. .1..1..0..0
A297873
Number of nX5 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 11, 0, 20, 80, 231, 579, 2437, 7507, 26278, 91622, 316406, 1091518, 3805139, 13166620, 45743807, 158968332, 552175778, 1918002602, 6665774473, 23158033370, 80468332463, 279615402191, 971597706573, 3376114511226, 11731585710994
Offset: 1
Some solutions for n=7
..0..0..1..0..0. .0..0..1..0..0. .0..0..0..1..1. .0..1..1..1..0
..0..1..1..1..0. .0..1..1..1..0. .0..1..1..0..1. .0..0..1..0..0
..0..1..0..1..0. .1..0..0..0..1. .1..1..0..0..1. .0..1..1..0..1
..0..0..1..0..0. .0..1..1..1..0. .1..0..1..1..0. .1..0..0..1..1
..1..1..1..1..1. .1..0..0..0..1. .0..0..1..0..0. .1..1..1..0..1
..0..1..1..0..1. .0..1..1..1..0. .1..0..1..0..1. .1..0..1..0..1
..0..0..1..0..0. .0..0..1..0..0. .1..1..0..1..1. .0..0..0..1..1
A297874
Number of nX6 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 13, 3, 68, 231, 887, 3307, 13910, 55501, 228947, 947582, 3930953, 16243210, 67305782, 278635282, 1154097789, 4780226279, 19802856358, 82032779562, 339845971291, 1407890373170, 5832655811595, 24163797280825, 100107714077232
Offset: 1
Some solutions for n=7
..0..0..0..0..1..1. .0..0..1..1..1..1. .0..0..1..0..0..1. .0..0..1..0..1..1
..0..1..1..0..0..1. .0..1..0..0..0..1. .0..1..1..0..1..1. .0..1..0..1..0..1
..0..1..0..1..0..1. .1..0..1..1..0..1. .1..0..0..0..0..1. .0..1..1..0..0..1
..0..1..0..1..1..1. .1..0..1..0..1..1. .0..1..1..1..1..0. .0..1..0..1..0..1
..0..1..1..0..0..1. .1..0..1..0..0..0. .0..0..0..0..0..1. .0..1..0..1..0..1
..0..1..0..1..1..0. .1..0..1..0..1..0. .1..1..1..0..1..1. .1..0..1..0..0..1
..0..0..1..0..0..0. .1..1..0..1..1..1. .1..1..1..0..0..1. .1..1..0..0..1..1
A297875
Number of n X 7 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 34, 6, 185, 579, 3307, 13778, 69160, 325394, 1617897, 7900112, 39099845, 191624353, 944384511, 4643953567, 22870757049, 112585762631, 554562217248, 2730604865872, 13448526185881, 66230043593237, 326180992906896
Offset: 1
Some solutions for n=7
..0..0..0..0..1..0..0. .0..0..0..0..0..1..1. .0..0..0..1..1..1..0
..0..1..1..1..0..1..0. .0..1..1..1..0..0..1. .0..1..1..0..1..0..0
..1..1..0..0..1..1..0. .1..0..0..0..1..0..1. .1..0..0..1..0..1..1
..1..0..1..1..0..1..0. .1..0..1..1..0..1..1. .1..1..0..1..0..1..0
..1..0..1..0..0..1..0. .1..0..1..1..1..0..1. .0..0..0..0..1..0..0
..1..0..0..1..1..0..1. .0..1..0..1..0..1..0. .1..0..0..1..0..0..1
..1..1..0..0..0..1..1. .0..0..1..0..1..0..0. .1..1..0..1..1..1..1
A297869
Number of n X n 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 1, 0, 10, 80, 887, 13778, 428609, 15589226, 918365908
Offset: 1
Some solutions for n=7
..0..1..1..1..0..1..1. .0..0..1..1..0..0..1. .0..0..1..1..1..0..0
..0..0..1..0..1..0..1. .1..0..0..1..0..1..1. .1..0..0..1..0..1..0
..1..1..1..0..1..0..0. .1..1..1..0..0..0..1. .1..1..1..1..0..1..0
..1..0..1..0..1..1..0. .0..0..0..1..0..0..0. .0..0..0..0..0..1..0
..1..0..0..1..0..0..1. .0..1..1..0..1..1..0. .0..1..1..1..1..0..0
..0..1..1..1..1..1..0. .1..0..0..0..0..0..1. .1..0..0..0..0..0..1
..0..0..0..0..0..0..0. .1..1..1..1..1..1..1. .1..1..1..1..1..1..1
Showing 1-7 of 7 results.
Comments