This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297877 #20 Feb 28 2018 04:59:36 %S A297877 1,1,1,1,1,1,1,1,1,2,2,1,1,1,2,3,4,1,1,1,1,2,4,7,8,6,3,2,1,1,1,2,4,8, %T A297877 13,19,14,13,7,4,1,1,1,1,2,4,9,16,32,45,52,48,40,24,16,7,3,2,1,1,1,2, %U A297877 4,9,17,38,70,120,150,179,164,143,94,63,32,19,7,4,1,1,1,1,2,4,9,18,41,85,181,324,500,659 %N A297877 Triangle T(n,k) read by rows, giving number of bipartite graphs with n nodes (n >= 0) and k edges (0 <= k <= floor(n/2*n/2)). %C A297877 The sum of the m-th row is the (m-1)-st member of A033995, number of bipartite graphs with n nodes. %D A297877 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New York / London, 1973. %H A297877 P. Hanlon, <a href="http://dx.doi.org/10.1016/0012-365X(79)90184-5">The enumeration of bipartite graphs</a>, Discrete Math. 28 (1979), 49-57. %H A297877 Juergen Will, <a href="/A297877/a297877.txt">Rows 0 to 10 of triangle.</a> %e A297877 Triangle begins: %e A297877 0: 1; %e A297877 1: 1; %e A297877 2: 1, 1; %e A297877 3: 1, 1, 1; %e A297877 4: 1, 1, 2, 2, 1; %e A297877 5: 1, 1, 2, 3, 4, 1, 1; %e A297877 6: 1, 1, 2, 4, 7, 8, 6, 3, 2, 1; %e A297877 7: 1, 1, 2, 4, 8, 13, 19, 14, 13, 7, 4, 1, 1; %Y A297877 Cf. A033995 (row sums). %K A297877 nonn,tabf %O A297877 0,10 %A A297877 _Juergen Will_, Jan 07 2018