This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297878 #54 Jun 19 2022 23:23:18 %S A297878 1,3,2,6,5,3,10,7,15,4,14,12,21,9,20,5,18,28,15,11,36,6,22,35,33,45, %T A297878 13,30,44,7,26,42,55,21,39,15,35,8,52,66,30,65,24,63,17,78,40,9,60,77, %U A297878 34,56,91,51,19,72,45,10,68,88,105,38,63,85,30,104,57,21,102,120,11,76,99,42,119,70,33,95 %N A297878 1/4 of the even edges of primitive Pythagorean triangles with legs (b=A081872, c=A081859), ordered by semiperimeters. %C A297878 It seems that all positive integers are included. %C A297878 Every term has the form of edge length e = (v-u)*u/2, semiperimeter s = (h+b+c)/2 = u*v with b > c, h^2 = b^2 + c^2, u < v < 2*u, v odd (see Theorem 3 of Witcosky). %H A297878 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean triple</a>. %H A297878 Lindsey Witcosky, <a href="https://www.whitman.edu/Documents/Academics/Mathematics/SeniorProject_LindseyWitcosky.pdf">Perimeters of primitive Pythagorean triangles</a>. %H A297878 <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples</a>. %e A297878 From _Michel Marcus_, Mar 07 2018: (Start) %e A297878 The first 10 terms of A081859 are 3, 5, 8, 7, 20, 12, 9, 28, 11, 16; %e A297878 The first 10 terms of A081872 are 4, 12, 15, 24, 21, 35, 40, 45, 60, 63; %e A297878 So the first 10 even legs are 4, 12, 8, 24, 20, 12, 40, 28, 60, 16; %e A297878 So the first 10 terms are 1, 3, 2, 6, 5, 3, 10, 7, 15, 4. (End) %t A297878 (* lists a0* have to be prepared before *) %t A297878 opPT = {a020882, a046087, a046086, a020882 + a046087 + a046086} topPT = Transpose[opPT]; stopPT = SortBy[topPT, {#[[4]]} &]; tstopPT = Transpose[stopPT]; nopPT = tstopPT; Do[ If[OddQ[tstopPT[[2]][[k]]], nopPT[[2]][[k]] = tstopPT[[2]][[k]]; nopPT[[3]][[k]] = tstopPT[[3]][[k]], nopPT[[2]][[k]] = tstopPT[[3]][[k]]; nopPT[[3]][[k]] = tstopPT[[2]][[k]]], {k, 1, 10000}]; nopPT[[3]]/4 %Y A297878 Cf. A298042((odd edge - 1)/2), A081872(b), A081859(c). %Y A297878 Cf. A231100 (even legs ordered by hypotenuse). %K A297878 nonn %O A297878 1,2 %A A297878 _Ralf Steiner_, Jan 07 2018