A297893
Numbers that divide exactly three Euclid numbers.
Original entry on oeis.org
3041, 24917, 144671, 224251, 278191, 301927, 726071, 729173, 772691, 1612007, 1822021, 1954343, 2001409, 2157209, 2451919, 2465917, 2522357, 2668231, 3684011, 3779527, 3965447, 4488299, 4683271, 4869083, 5244427, 5650219, 6002519, 6324191, 6499721, 7252669
Offset: 1
a(1) = 3041 because 3041 is the smallest number that divides exactly three Euclid numbers: 1 + A002110(206), 1 + A002110(263), and 1 + A002110(409); these numbers have 532, 712, and 1201 digits, respectively.
Cf.
A002110 (primorials),
A006862 (Euclid numbers),
A113165 (numbers > 1 that divide Euclid numbers),
A297891 (numbers > 1 that divide exactly two Euclid numbers).
A297894
Composite numbers that divide at least one Euclid number.
Original entry on oeis.org
1843, 5263, 10147, 12629, 24047, 26869, 30031, 136109, 189001, 356189, 510511, 648077, 709493, 960359, 1293109, 1459817, 1513817, 1755431, 2263607, 2290129, 2578327, 2825041, 3173707, 3415703, 3440471, 4629071, 5007641, 5497781, 5698237, 6021971, 8614843
Offset: 1
a(1) = 1843 because 1843 = 19*97 is the smallest composite number that divides a Euclid number: 1843 divides 1 + A002110(7) = 1 + 2*3*5*7*11*13*17 = 510511 = 19*97*277. (Thus, 5263 (= 19*277), 26869 (= 97*277), and 19*97*277 = 510511 itself are also composites that divide a Euclid number; 5263 = a(2), 26869 = a(6), and 510511 = a(11).)
Cf.
A002110 (primorials),
A006862 (Euclid numbers),
A113165 (numbers > 1 that divide Euclid numbers),
A297891 (numbers > 1 that divide exactly two Euclid numbers).
Showing 1-2 of 2 results.
Comments