This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297898 #14 Jan 14 2024 12:38:23 %S A297898 1,3,1,13,4,1,63,19,5,1,321,96,26,6,1,1683,501,138,34,7,1,8989,2668, %T A297898 743,190,43,8,1,48639,14407,4043,1059,253,53,9,1,265729,78592,22180, %U A297898 5908,1462,328,64,10,1,1462563,432073,122468,33028,8378,1966,416,76,11,1 %N A297898 Triangle read by rows, T(n, k) = (-1)^(n-k)*binomial(n,k)*hypergeom([k - n, n + 1], k + 1, 2), for n >= 0 and 0 <= k <= n. %F A297898 T(n, k) = Sum_{j=0..n - k} binomial(n - k, j)*binomial(n + j, j). - _Detlef Meya_, Jan 14 2024 %e A297898 Triangle starts: %e A297898 [0] 1 %e A297898 [1] 3, 1 %e A297898 [2] 13, 4, 1 %e A297898 [3] 63, 19, 5, 1 %e A297898 [4] 321, 96, 26, 6, 1 %e A297898 [5] 1683, 501, 138, 34, 7, 1 %e A297898 [6] 8989, 2668, 743, 190, 43, 8, 1 %t A297898 T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 1, 2]; %t A297898 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten %t A297898 T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n + j, j], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* _Detlef Meya_, Jan 14 2024 *) %Y A297898 T(n, 0) = A001850(n). %Y A297898 Row sums are A050146(n+1). %K A297898 nonn,tabl %O A297898 0,2 %A A297898 _Peter Luschny_, Jan 08 2018