This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297926 #12 May 20 2018 11:36:49 %S A297926 1,1,6,50,525,6552,93786,1504932,26640900,514083570,10713538550, %T A297926 239342496120,5697111804566,143759365731100,3829115870472600, %U A297926 107260549881604200,3149703964487098665,96686987797052290440,3094969650442399156350,103079905957566679518300 %N A297926 Number of set partitions of [2n] in which the size of the first block is n. %C A297926 The blocks are ordered with increasing least elements. %C A297926 a(0) = 1 by convention. %H A297926 Alois P. Heinz, <a href="/A297926/b297926.txt">Table of n, a(n) for n = 0..445</a> %H A297926 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A297926 a(n) = binomial(2*n-1,n-1) * Bell(n). %F A297926 a(n) = A056857(2n,n) = A056860(2n,n). %e A297926 a(1) = 1: 1|2. %e A297926 a(2) = 6: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 14|2|3. %p A297926 b:= proc(n) option remember; `if`(n=0, 1, %p A297926 add(b(n-j)*binomial(n-1, j-1), j=1..n)) %p A297926 end: %p A297926 a:= n-> binomial(2*n-1, n-1)*b(n): %p A297926 seq(a(n), n=0..25); %t A297926 b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]]; %t A297926 a[n_] := Binomial[2*n-1, n-1] * b[n]; %t A297926 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 20 2018, translated from Maple *) %Y A297926 Cf. A000110, A056857, A056860, A276961, A297924. %K A297926 nonn %O A297926 0,3 %A A297926 _Alois P. Heinz_, Jan 08 2018