This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297927 #10 Jan 16 2018 20:49:58 %S A297927 2,6,3,2,9,0,4,5,5,5,1,7,9,0,6,5,9,4,5,7,9,8,7,2,8,5,5,6,7,5,3,5,9,7, %T A297927 4,5,7,1,1,5,5,7,0,6,2,9,0,9,8,6,4,2,3,8,0,2,3,2,2,2,0,3,4,7,4,9,3,2, %U A297927 5,9,4,7,2,2,1,3,0,6,9,1,2,1,3,5,6,1,9 %N A297927 Decimal expansion of ratio of number of 1's to number of 2's in A293630. %C A297927 Equals (2 - d)/(d - 1), where d = lim_{k->infinity} (1/k)*Sum_{i=1..k} A293630(i) = 1.275261... (see A296564). %C A297927 See comments from _Jon E. Schoenfield_ on A296564 for explanation of PARI program. %C A297927 Is this number transcendental? %H A297927 Iain Fox, <a href="/A297927/b297927.txt">Table of n, a(n) for n = 1..20000</a> %e A297927 Equals 2.6329045551790659457987285567535974571155706290... %e A297927 After generating k steps of A293630: %e A297927 k = 0: [1, 2]; 1 %e A297927 k = 1: [1, 2, 1, 1]; 3 %e A297927 k = 2: [1, 2, 1, 1, 1, 2, 1]; 2.5 %e A297927 k = 3: [1, 2, 1, 1, 1, 2, ...]; 2.25 %e A297927 k = 4: [1, 2, 1, 1, 1, 2, ...]; 2.7 %e A297927 k = 5: [1, 2, 1, 1, 1, 2, ...]; 2.65 %e A297927 k = 6: [1, 2, 1, 1, 1, 2, ...]; 2.625 %e A297927 ... %e A297927 k = infinity: [1, 2, 1, 1, 1, 2, ...]; 2.632904555179... %o A297927 (PARI) gen(build) = { %o A297927 my(S = [1, 2], n = 2, t = 3, L, nPrev, E); %o A297927 for(j = 1, build, L = S[#S]; n = n*(1+L)-L; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i])))); %o A297927 E = S; %o A297927 for(j = build + 1, build + #E, L = E[#E+1-(j-build)]; n = n*(1+L)-L; t = t*(1+L)-L^2); %o A297927 return(1.0*(2 - t/n)/(t/n - 1)) %o A297927 } \\ (gradually increase build to get more precise answers) %Y A297927 Cf. A293630, A296564. %K A297927 cons,nonn %O A297927 1,1 %A A297927 _Iain Fox_, Jan 08 2018 %E A297927 Terms after a(3) corrected by _Iain Fox_, Jan 16 2018