This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297928 #9 Apr 22 2018 08:26:18 %S A297928 4,13,43,151,559,2143,8383,33151,131839,525823,2100223,8394751, %T A297928 33566719,134242303,536920063,2147581951,8590131199,34360131583, %U A297928 137439739903,549757386751,2199026401279,8796099313663,35184384671743,140737513521151,562950003752959,2251799914348543 %N A297928 a(n) = 2*4^n + 3*2^n - 1. %C A297928 For n > 0, in binary, this is a 1 followed by n-1 0's followed by 10 followed by n 1's. %H A297928 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8) %F A297928 G.f.: (4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)). %F A297928 E.g.f.: 2*e^(4*x) + 3*e^(2*x) - e^x. %F A297928 a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3), n > 2. %F A297928 a(n) = A000918(n) + A085601(n). %e A297928 a(0) = 2*4^0 + 3*2^0 - 1 = 4; in binary, 100. %e A297928 a(1) = 2*4^1 + 3*2^1 - 1 = 13; in binary, 1101. %e A297928 a(2) = 2*4^2 + 3*2^2 - 1 = 43; in binary, 101011. %e A297928 a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111. %e A297928 a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111. %e A297928 ... %t A297928 Table[2 4^n+3 2^n-1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{4,13,43},30] (* _Harvey P. Dale_, Apr 22 2018 *) %o A297928 (PARI) a(n) = 2*4^n + 3*2^n - 1 %o A297928 (PARI) first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n)) %Y A297928 A lower bound for A296807. %Y A297928 Cf. A000918, A085601. %K A297928 nonn,easy %O A297928 0,1 %A A297928 _Iain Fox_, Jan 08 2018