This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297933 #8 Apr 26 2021 19:24:06 %S A297933 1,2,3,4,6,7,5,11,14,15,8,12,23,30,31,9,13,28,47,62,63,10,19,29,60,95, %T A297933 126,127,16,22,39,61,124,191,254,255,17,24,46,79,125,252,383,510,511, %U A297933 18,25,55,94,159,253,508,767,1022,1023,20,26,56,111,190,319 %N A297933 Rectangular array, by antidiagonals: Row n gives the numbers whose base-2 digits d(m), d(m-1), ..., d(0) having n as maximal run-length of 1's. %C A297933 Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. %e A297933 Northwest corner: %e A297933 1 2 4 5 8 9 10 16 %e A297933 3 6 11 12 13 19 22 24 %e A297933 7 14 23 28 29 39 46 55 %e A297933 15 30 47 60 61 79 94 111 %e A297933 31 62 95 124 125 159 190 223 %e A297933 63 126 191 252 253 319 382 447 %e A297933 127 254 383 508 509 639 766 895 %e A297933 *** %e A297933 Base-2 digits of 59: 1,1,1,0,1,1 with runs 111 and 11 of 1's, so that 59 is in row 3. %t A297933 b = 2; s[n_] := Split[IntegerDigits[n, b]]; %t A297933 m[n_, d_] := Union[Select[s[n], MemberQ[#, d] &]] %t A297933 h[n_, d_] := Max[Map[Length, m[n, d]]] %t A297933 z = 6000; w = t[d_] := Table[h[n, d], {n, 1, z}] /. -Infinity -> 0 %t A297933 TableForm[Table[Flatten[Position[t[1], d]], {d, 0, 8}]] (* A297933 array *) %t A297933 u[d_] := Flatten[Position[t[1], d]] %t A297933 v[d_, n_] := u[d][[n]]; %t A297933 Table[v[n, k - n + 1], {k, 1, 11}, {n, 1, k}] // Flatten (* A297933 sequence *) %Y A297933 Cf. A297769, A297932. %K A297933 nonn,base,easy,tabl %O A297933 1,2 %A A297933 _Clark Kimberling_, Jan 26 2018