cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297961 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by alternately left- and right-concatenating a digit to the a(n-1) primes obtained in the previous iteration.

This page as a plain text file.
%I A297961 #50 Apr 11 2021 11:59:49
%S A297961 4,11,20,53,51,100,63,76,42,43,20,13,4,4,1
%N A297961 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by alternately left- and right-concatenating a digit to the a(n-1) primes obtained in the previous iteration.
%C A297961 No 16-digit numbers can be obtained from the 15-digit number 889292677731979.
%H A297961 Prime Curios, <a href="https://primes.utm.edu/curios/page.php/889292677731979.html">889292677731979</a>
%e A297961 1-digit   2-digit    3-digit    4-digit   ...  15-digit
%e A297961 ---------------------------------------------------------------
%e A297961 2
%e A297961 3         13         131        2131
%e A297961                                 6131
%e A297961                      137        2137
%e A297961                                 3137
%e A297961                                 9137
%e A297961                      139        4139
%e A297961           23         233        5233
%e A297961                                 8233
%e A297961                      239        2239
%e A297961                                 9239
%e A297961           43         431        5431
%e A297961                                 8431
%e A297961                                 9431
%e A297961                      433        1433
%e A297961                                 3433
%e A297961                                 7433
%e A297961                                 9433
%e A297961                      439        1439
%e A297961                                 9439
%e A297961           53
%e A297961           73         733        1733
%e A297961                                 3733
%e A297961                                 4733
%e A297961                                 6733
%e A297961                                 9733
%e A297961                      739        3739
%e A297961                                 9739
%e A297961           83         839        5839
%e A297961                                 8839
%e A297961                                 9839
%e A297961 5
%e A297961 7         17         173        6173
%e A297961                                 9173
%e A297961                      179        2179
%e A297961                                 5179
%e A297961                                 8179
%e A297961           37         373        1373
%e A297961                                 3373
%e A297961                                 4373
%e A297961                                 6373
%e A297961                      379        6379
%e A297961           47         479        5479
%e A297961                                 9479
%e A297961           67         673        3673
%e A297961                                 4673
%e A297961                                 6673
%e A297961                                 7673
%e A297961                      677        2677            889292677731979
%e A297961                                 3677
%e A297961                                 8677
%e A297961                                 9677
%e A297961           97         971        2971
%e A297961                                 6971
%e A297961                                 8971
%e A297961                      977        6977
%e A297961 ---------------------------------------------------------------
%e A297961 a(1) = 4, a(2) = 11, a(3) = 20, a(4) = 53, ..., a(15)= 1.
%t A297961 Block[{b = 10, t}, t = Select[Range[b], CoprimeQ[#, b] &]; TakeWhile[Length /@ Fold[Function[{a, n}, Append[a, If[EvenQ[n], Join @@ Map[Function[k, Select[Map[Prepend[k, #] &, Range[9]], PrimeQ@ FromDigits[#, b] &]], Last[a]], Join @@ Map[Function[k, Select[Map[Append[k, #] &, t], PrimeQ@ FromDigits[#, b] &]], Last[a]]]]] @@ {#1, #2} &, {IntegerDigits[Prime@ Range@ PrimePi@ b, b]}, Range[2, 16]], # > 0 &]] (* _Michael De Vlieger_, Jan 20 2018 *)
%o A297961 (Python)
%o A297961 from sympy import isprime
%o A297961 def alst():
%o A297961   primes, alst = [2, 3, 5, 7], []
%o A297961   while len(primes) > 0:
%o A297961     alst.append(len(primes))
%o A297961     if len(alst)%2 == 1:
%o A297961       candidates = set(int(d+str(p)) for p in primes for d in "123456789")
%o A297961     else:
%o A297961       candidates = set(int(str(p)+d) for p in primes for d in "1379")
%o A297961     primes = [c for c in candidates if isprime(c)]
%o A297961   return alst
%o A297961 print(alst()) # _Michael S. Branicky_, Apr 11 2021
%Y A297961 Cf. A050986, A050987, A297960, A298048.
%K A297961 nonn,full,base,fini
%O A297961 1,1
%A A297961 _Seiichi Manyama_, Jan 09 2018