This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297968 #20 Apr 29 2019 07:05:30 %S A297968 0,4,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,12,0,0,0,0, %T A297968 0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0, %U A297968 0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0 %N A297968 Number of solutions to x*y*(x+y)=n in coprime integers. %C A297968 a(n)=0 if n is odd. - _Robert Israel_, Jan 10 2018 %H A297968 Robert Israel, <a href="/A297968/b297968.txt">Table of n, a(n) for n = 1..10000</a> %H A297968 C. L. Stewart, <a href="https://doi.org/10.1090/S0894-0347-1991-1119199-X">On the number of solutions of polynomial congruences and Thue equations</a>, J. Amer. Math. Soc. 4 (1991), 793-835. %H A297968 S. Y. Xiao et al, <a href="https://mathoverflow.net/questions/290299">Integers h such that xy(x+y)=h has many integer solutions</a>, Math Overflow %e A297968 For n=6 the a(n)=6 solutions are (x,y) = (-3,1), (-3,2), (1,-3), (1,2), (2,1) and (2,-3). %p A297968 f:= proc(n) local d,count,x,s,ys; %p A297968 d:= numtheory:-divisors(n); %p A297968 count:= 0: %p A297968 for x in d union map(`-`,d) do %p A297968 if issqr(x^4+4*n*x) then %p A297968 s:= sqrt(x^4+4*n*x); %p A297968 ys:= select(t -> type(t,integer) and igcd(t,x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]); %p A297968 count:= count + nops(ys); %p A297968 fi %p A297968 od; %p A297968 count %p A297968 end proc: %p A297968 map(f, [$1..200]); %t A297968 f[n_] := Module[{d, count, x, s, ys}, d = Divisors[n]; count = 0; Do[If[ IntegerQ[Sqrt[x^4 + 4n x]], s = Sqrt[x^4 + 4n x]; ys = Select[{-(s+x^2)/ (2x), (x^2-s)/(2x)}, IntegerQ[#] && GCD[#, x] == 1&]; count = count + Length[ys]], {x, Union[d, -d]}]; count]; Array[f, 200] (* _Jean-François Alcover_, Apr 29 2019, after _Robert Israel_ *) %K A297968 nonn %O A297968 1,2 %A A297968 _Robert Israel_, Jan 10 2018