A297995 Number of ways to write n as 4*u + v^2 + x^3 + y^4 + 2*z^8, where u is 0 or 1, v is a positive integer and x,y,z are nonnegative integers.
1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 6, 5, 5, 5, 7, 6, 6, 5, 4, 5, 5, 6, 3, 5, 4, 4, 5, 5, 5, 5, 6, 5, 5, 5, 4, 4, 4, 2, 2, 2, 3, 4, 6, 6, 5, 7, 6, 7, 5, 6, 4, 4, 4, 3, 4, 3, 5, 4
Offset: 1
Keywords
Examples
a(500) = 1 since 500 = 4*0 + 22^2 + 0^3 + 2^4 + 2*0^8. a(1507) = 1 since 1507 = 4*1 + 13^2 + 11^3 + 1^4 + 2*1^8. a(9251) = 1 since 9251 = 4*0 + 91^2 + 7^3 + 5^4 + 2*1^8. a(12923) = 1 since 12923 = 4*1 + 54^2 + 1^3 + 10^4 + 2*1^8. a(12976) = 1 since 12976 = 4*0 + 92^2 + 15^3 + 5^4 + 2*2^8. a(48381) = 1 since 48381 = 4*1 + 140^2 + 6^3 + 13^4 + 2*0^8.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120. (See Remark 3.5.)
Programs
-
Mathematica
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]; Do[r=0;Do[If[SQ[n-4u-2z^8-y^4-x^3],r=r+1],{u,0,Boole[n>3]},{z,0,((n-4u)/2)^(1/8)},{y,0,(n-4u-2z^8)^(1/4)},{x,0,(n-4u-2z^8-y^4)^(1/3)}];Print[n," ",r],{n,1,80}]
Comments