cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298003 Solution b( ) of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 38, 39, 41, 43, 44, 45, 46, 48, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92, 94
Offset: 0

Views

Author

Clark Kimberling, Feb 08 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The solution a( ) is given at A297830, which includes a guide to related sequences.
Conjecture: 3/5 < a(n) - n*sqrt(2)*n < 3 for n >= 1.

Crossrefs

Cf. A297830.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n;
    j = 1; While[j < 80000, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
    u = Table[a[n], {n, 0, k}]; (* A297830 *)
    v = Table[b[n], {n, 0, k}]; (* A298003 *)
    Take[u, 50]
    Take[v, 50]