This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298010 #12 Apr 29 2019 12:25:52 %S A298010 2,6,12,20,30,42,56,70,72,84,90,110,120,126,132,156,180,182,198,210, %T A298010 240,264,272,286,306,308,330,342,380,390,420,462,468,506,510,520,546, %U A298010 552,600,624,630,646,650,660,702,714,756,798,812,840,870,880,884,912,930,966,992,1008,1020,1056,1122 %N A298010 Numbers n such that x*y*(x+y) = n has at least one solution in coprime integers. %C A298010 Numbers n such that A297968(n) > 0. %C A298010 All terms are even. %H A298010 Robert Israel, <a href="/A298010/b298010.txt">Table of n, a(n) for n = 1..10000</a> %p A298010 filter:= proc(n) local d,x,s,ys; %p A298010 d:= numtheory:-divisors(n); %p A298010 for x in d do %p A298010 if issqr(x^4+4*n*x) then %p A298010 s:= sqrt(x^4+4*n*x); %p A298010 ys:= select(t -> type(t,integer) and igcd(t,x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]); %p A298010 if ys <> [] then return true fi; %p A298010 fi %p A298010 od; %p A298010 false %p A298010 end proc: %p A298010 select(filter, [seq(i,i=1..10000,2)]); %t A298010 f[n_] := Module[{d, count, x, s, ys}, d = Divisors[n]; count = 0; Do[If[ IntegerQ[Sqrt[x^4 + 4 n x]], s = Sqrt[x^4 + 4 n x]; ys = Select[{-(s + x^2)/(2x), (x^2 - s)/(2x)}, IntegerQ[#] && GCD[#, x] == 1&]; count = count + Length[ys]], {x, Union[d, -d]}]; count]; %t A298010 Position[Array[f, 2000], _?Positive] // Flatten (* _Jean-François Alcover_, Apr 29 2019, after _Robert Israel_ in A297968 *) %Y A298010 Cf. A297968. %K A298010 nonn %O A298010 1,1 %A A298010 _Robert Israel_, Jan 10 2018