cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298026 Coordination sequence of Dual(3.6.3.6) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 6, 18, 12, 30, 18, 42, 24, 54, 30, 66, 36, 78, 42, 90, 48, 102, 54, 114, 60, 126, 66, 138, 72, 150, 78, 162, 84, 174, 90, 186, 96, 198, 102, 210, 108, 222, 114, 234, 120, 246, 126, 258, 132, 270, 138, 282, 144, 294, 150, 306, 156, 318, 162, 330, 168, 342, 174, 354, 180, 366, 186, 378, 192, 390
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A298027 (partial sums), A298028 (trivalent point).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 3*n else 6*n; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {6, 6, 18, 12}, 80]] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    Vec((1 + 6*x + 4*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jan 22 2018

Formula

a(0)=1; a(2*k)=6*k, a(2*k+1)=12*k+6.
G.f.: 1 + 6*x*(1+x+x^2)/(1-x^2)^2. - Robert Israel, Jan 21 2018
From Colin Barker, Jan 22 2018: (Start)
a(n) = 3*n for n>0 and even.
a(n) = 6*n for n odd.
a(n) = 2*a(n-2) - a(n-4) for n>4.
(End)
a(n) = 6*A026741(n), n>0. - R. J. Mathar, Jan 29 2018