cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A298036 Coordination sequence of Dual(4.6.12) tiling with respect to a 12-valent node.

Original entry on oeis.org

1, 12, 12, 36, 24, 60, 36, 84, 48, 108, 60, 132, 72, 156, 84, 180, 96, 204, 108, 228, 120, 252, 132, 276, 144, 300, 156, 324, 168, 348, 180, 372, 192, 396, 204, 420, 216, 444, 228, 468, 240, 492, 252, 516, 264, 540, 276, 564, 288, 588, 300
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2018

Keywords

Comments

Conjecture: For n>0, a(n)=6n if n even, otherwise 12n.
The conjecture can easily be shown to be true: The vertices at distance 2k consist of 3k 12-valent and 3k 4-alent vertices, and the vertices at distance 2k+1 consist of 6(k+1) 6-valent and 6(k+1) 4-valent vertices. - Charlie Neder, Apr 22 2019

Crossrefs

Cf. A072154, A298037 (partial sums), A298038 (hexavalent node), A298040 (tetravalent node).
Cf. A109043 (a(n)/6), A026741 (a(n)/12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {1, 12, 12, 36, 24}, 100] (* Paolo Xausa, Jul 19 2024 *)

Formula

From Charlie Neder, Apr 22 2019: (Start)
a(n) = 6 * n * (1 + n mod 2), n > 0.
G.f.: (1 + 12*x + 10*x^2 + 12*x^3 + x^4)/(1 - x^2)^2. (End)

Extensions

a(7)-a(50) from Charlie Neder, Apr 22 2019
Showing 1-1 of 1 results.