A298042 (d-1)/2 of the odd edges d of primitive Pythagorean triangles with legs (b=A081872, c=A081859), ordered by semiperimeters.
1, 2, 7, 3, 10, 17, 4, 22, 5, 31, 16, 27, 6, 38, 19, 49, 32, 7, 45, 58, 8, 71, 52, 25, 42, 9, 82, 59, 28, 97, 76, 47, 10, 93, 66, 110, 85, 127, 52, 11, 104, 34, 123, 57, 142, 12, 115, 161, 80, 37, 136, 103, 13, 126, 178, 87, 149, 199, 112, 67, 14, 172, 137, 94, 195, 43, 162, 218, 72, 15, 241
Offset: 1
Keywords
Examples
From _Michel Marcus_, Mar 07 2018: (Start) The first 10 terms of A081859 are 3, 5, 8, 7, 20, 12, 9, 28, 11, 16; The first 10 terms of A081872 are 4, 12, 15, 24, 21, 35, 40, 45, 60, 63; So the first 10 odd legs are 3, 5, 15, 7, 21, 35, 9, 45, 11, 63; So the first 10 terms are 1, 2, 7, 3, 10, 17, 4, 22, 5, 31. (End)
Links
Crossrefs
Programs
-
Mathematica
(* lists a0* have to be prepared before *) opPT = {a020882, a046087, a046086, a020882 + a046087 + a046086}; topPT = Transpose[opPT]; stopPT = SortBy[topPT, {#[[4]]} &]; tstopPT = Transpose[stopPT]; nopPT = tstopPT; Do[ If[OddQ[tstopPT[[2]][[k]]], nopPT[[2]][[k]] = tstopPT[[2]][[k]]; nopPT[[3]][[k]] = tstopPT[[3]][[k]], nopPT[[2]][[k]] = tstopPT[[3]][[k]]; nopPT[[3]][[k]] = tstopPT[[2]][[k]]], {k, 1, 10000}];(nopPT[[2]] - 1)/2
Comments