A298045 Integers equal to the least common multiple of the set of numbers generated by all the differences between their consecutive divisors, taken in increasing order.
1, 60, 300, 504, 1500, 1512, 3528, 3660, 4536, 7500, 12240, 13608, 24696, 36720, 37500, 40824, 122472, 172872, 187500, 208080, 223260, 367416, 937500, 1102248, 1210104, 3306744, 3537360, 4687500, 8470728, 9920232, 12450312, 13618860, 23437500, 29760696
Offset: 1
Keywords
Examples
Divisors of 504 are 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252 and 504. Differences are: 2 - 1 = 1, 3 - 2 = 1, 4 - 3 = 1, 6 - 4 = 2, 7 - 6 = 1, 8 - 7 = 1, 9 - 8 = 1, 12 - 9 = 3, 14 - 12 = 2, 18 - 14 = 4, 21 - 18 = 3, 24 - 21 = 3, 28 - 24 = 4, 36 - 28 = 8, 42 - 36 = 6, 56 - 42 = 14, 63 - 56 = 7, 72 - 63 = 9, 84 - 72 = 12, 126 - 84 = 42, 168 - 126 = 42, 252 - 168 = 84, 504 - 252 = 252. lcm(1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 42, 84, 252) is 504 again.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..61 (terms < 1.5*10^11)
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); if n=lcm(op([seq(a[k+1]-a[k],k=1..nops(a)-1)])) then print(n); fi; od; end: P(10^6);
-
Mathematica
{1}~Join~Select[Range[2, 10^6], LCM @@ Differences@ Divisors@ # == # &] (* Michael De Vlieger, Jan 13 2018 *)
Extensions
More terms from Michael De Vlieger, Jan 13 2018
a(31)-a(34) from Giovanni Resta, Jan 15 2018
Comments