This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298048 #52 Jan 28 2022 20:30:42 %S A298048 4,16,70,243,638,1450,2819,4951,7629,10677,13267,15182,15923,15796, %T A298048 14369,12547,10291,7939,5703,3911,2559,1595,920,561,321,167,72,37,11, %U A298048 6,3 %N A298048 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by left- or right-concatenating a digit to the a(n-1) primes obtained in the previous iteration. %C A298048 A137812 lists the primes counted here. - _Jon E. Schoenfield_, Jan 28 2022 %e A298048 2-digit primes: %e A298048 ------------------- %e A298048 23 2->23 or 3->23 %e A298048 29 2->29 %e A298048 13 3->13 %e A298048 43 3->43 %e A298048 53 3->53 or 5->53 %e A298048 73 3->73 or 7->73 %e A298048 83 3->83 %e A298048 31 3->31 %e A298048 37 3->37 or 7->37 %e A298048 59 5->59 %e A298048 17 7->17 %e A298048 47 7->47 %e A298048 67 7->67 %e A298048 97 7->97 %e A298048 71 7->71 %e A298048 79 7->79 %e A298048 ------------------- %e A298048 a(2) = 16. %e A298048 =================== %e A298048 3-digit primes: %e A298048 [223, 233, 523, 823, 239, 229, 293, 829, 929, 113, 131, 313, 613, 137, 139, 311, 331, 431, 631, 317, 433, 443, 643, 743, 439, 353, 653, 853, 953, 173, 373, 733, 673, 773, 739, 337, 937, 379, 283, 383, 683, 883, 983, 839, 359, 593, 659, 859, 599, 617, 179, 271, 571, 971, 719, 347, 547, 647, 947, 479, 167, 367, 467, 677, 967, 197, 397, 797, 977, 997] %e A298048 In the case of 223, 2->23 (adding the rightmost digit)->223 (adding the leftmost digit) and 2, 23 and 223 are prime. %e A298048 In the case of 233, 2->23 (adding the rightmost digit)->233 (adding the rightmost digit) and 2, 23 and 233 are prime. %e A298048 In the case of 523, 2->23 (adding the rightmost digit)->523 (adding the leftmost digit) and 2, 23 and 523 are prime. %e A298048 a(3) = 70. %t A298048 Block[{b = 10, t}, t = Select[Range[b], CoprimeQ[#, b] &]; TakeWhile[Length /@ Fold[Function[{a, n}, Append[a, Union[Join @@ {Join @@ Map[Function[k, Select[Map[Prepend[k, #] &, Range[b - 1]], PrimeQ@ FromDigits[#, b] &]], Last[a]], Join @@ Map[Function[k, Select[Map[Append[k, #] &, t], PrimeQ@ FromDigits[#, b] &]], Last[a]]}] ] ] @@ {#1, #2} &, {IntegerDigits[Prime@ Range@ PrimePi@ b, b]}, Range[2, 40]], # > 0 &]] (* _Michael De Vlieger_, Jan 21 2018 *) %o A298048 (Ruby) %o A298048 require 'prime' %o A298048 def A298048(n) %o A298048 ary = [2, 3, 5, 7] %o A298048 a_ary = [4] %o A298048 (n - 1).times{|i| %o A298048 ary1 = [] %o A298048 ary.each{|a| %o A298048 (1..9).each{|d| %o A298048 j = d * 10 ** (i + 1) + a %o A298048 ary1 << j if j.prime? %o A298048 j = a * 10 + d %o A298048 ary1 << j if j.prime? %o A298048 } %o A298048 } %o A298048 ary = ary1.uniq %o A298048 a_ary << ary.size %o A298048 } %o A298048 a_ary %o A298048 end %o A298048 p A298048(10) %o A298048 (Python) %o A298048 from sympy import isprime %o A298048 def alst(): %o A298048 primes, alst = [2, 3, 5, 7], [] %o A298048 while len(primes) > 0: %o A298048 alst.append(len(primes)) %o A298048 candidates = set(int(d+str(p)) for p in primes for d in "123456789") %o A298048 candidates |= set(int(str(p)+d) for p in primes for d in "1379") %o A298048 primes = [c for c in candidates if isprime(c)] %o A298048 return alst %o A298048 print(alst()) # _Michael S. Branicky_, Apr 11 2021 %Y A298048 Cf. A050986, A050987, A137812, A297960, A297961. %K A298048 nonn,fini,full,base %O A298048 1,1 %A A298048 _Seiichi Manyama_, Jan 11 2018 %E A298048 a(16)-a(31) from _Michael De Vlieger_, Jan 21 2018