This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298051 #4 Jan 11 2018 07:17:56 %S A298051 2,13,19,40,73,141,240,428,779,1531,2989,5729,10760,20205,38568,74861, %T A298051 144345,276668,528526,1012806,1946937,3753744,7220044,13870376, %U A298051 26646526,51244788,98611858,189814459,365167476,702384337,1351233021,2600175921 %N A298051 Number of nX4 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero. %C A298051 Column 4 of A298055. %H A298051 R. H. Hardin, <a href="/A298051/b298051.txt">Table of n, a(n) for n = 1..210</a> %F A298051 Empirical: a(n) = 3*a(n-1) -a(n-2) +a(n-3) -9*a(n-4) +7*a(n-5) +7*a(n-6) -37*a(n-7) +11*a(n-8) +28*a(n-9) +100*a(n-10) -98*a(n-11) -42*a(n-12) +161*a(n-13) -16*a(n-14) -345*a(n-15) -156*a(n-16) +337*a(n-17) +239*a(n-18) -795*a(n-19) +167*a(n-20) +1078*a(n-21) -183*a(n-22) -882*a(n-23) +372*a(n-24) +1998*a(n-25) -553*a(n-26) -1150*a(n-27) +1555*a(n-28) +1083*a(n-29) -3924*a(n-30) -3204*a(n-31) +1846*a(n-32) +337*a(n-33) -2717*a(n-34) -470*a(n-35) +5473*a(n-36) +1235*a(n-37) -3801*a(n-38) +1779*a(n-39) +3426*a(n-40) +552*a(n-41) -310*a(n-42) +2887*a(n-43) +2284*a(n-44) -4842*a(n-45) -3600*a(n-46) +757*a(n-47) -1823*a(n-48) -3322*a(n-49) +653*a(n-50) +4588*a(n-51) +1961*a(n-52) -2239*a(n-53) -1266*a(n-54) +902*a(n-55) +461*a(n-56) -486*a(n-57) -212*a(n-58) -41*a(n-59) -145*a(n-60) +320*a(n-61) +534*a(n-62) +56*a(n-63) -277*a(n-64) -189*a(n-65) -24*a(n-66) +40*a(n-67) +26*a(n-68) +9*a(n-69) +2*a(n-70) -2*a(n-71) -a(n-72) for n>73 %e A298051 Some solutions for n=5 %e A298051 ..0..0..0..0. .0..1..1..0. .0..1..1..0. .0..1..0..1. .0..0..1..1 %e A298051 ..1..1..1..1. .0..0..1..0. .0..0..1..0. .0..1..0..1. .1..1..0..0 %e A298051 ..0..1..1..0. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..1..1 %e A298051 ..0..1..1..0. .0..0..1..1. .0..1..0..1. .1..1..1..1. .0..1..0..0 %e A298051 ..1..0..0..1. .1..1..0..0. .0..1..0..1. .1..0..0..0. .0..1..1..0 %Y A298051 Cf. A298055. %K A298051 nonn %O A298051 1,1 %A A298051 _R. H. Hardin_, Jan 11 2018