This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298076 #89 Oct 15 2018 07:22:48 %S A298076 2,2,2,4,2,6,2,16,8,10,2,1260,2,28,24,16,2,162,2,2080,6,22,2,207480,7, %T A298076 52,27,420,2,43890,2,256,21,102,370,5988060,2,190,12,7412680,2,2016,2, %U A298076 507496,495,46,2,1486179696,68,5050,476,66300,2,3292758,274,72682120 %N A298076 Least k > 1 such that all divisors of (k^n-1)/(k-1) are == 1 (mod n). %C A298076 a(n) is the smallest k > 1 such that Phi_m(k) has all its divisors == 1 (mod n) for all m > 1 dividing n, where Phi_m(x) are the cyclotomic polynomials. %C A298076 If n is a prime, then a(n) = 2. %C A298076 It seems that if n is a composite, then a(n) > 2. We have a(91) = 3. %C A298076 If n is even, a(n) is divisible by n. %C A298076 The generalized Bunyakovsky conjecture (Schinzel's hypothesis H) implies that there exist k divisible by n such that Phi_m(k) is prime for all m > 1 dividing n, and thus that a(n) always exists. %C A298076 If n is composite, n is a weak Fermat pseudoprime to base a(n). %C A298076 a(n) >= A239452(n), with equality for primes and 1, 4, 9, 16, 21, 25, 39, 91, ... Are there infinitely many such numbers? %C A298076 a(n) = n for n = 2, 4, 6, 10, 16, 22, 27, 46, ... %C A298076 Problem: Are there infinitely many composite numbers n such that the number (n^n-1)/(n-1) has all divisors d == 1 (mod n)? %C A298076 Conjecture (T. Ordowski, 2018): Let b be an integer with |b| > 1. Then the number (b^n-1)/(b-1) has all divisors d == 1 (mod n) for a composite n if and only if the number n is a weak Fermat pseudoprime to base |b| such that, for each prime divisor p of n, the number (b^p-1)/(b-1) has all prime divisors q == 1 (mod n). %C A298076 Also: least k > 1 such that all prime factors of (k^n-1)/(k-1) are == 1 (mod n). - _M. F. Hasler_, Oct 14 2018 %H A298076 Krzysztof Ziemak, <a href="/A298076/a298076.txt">PARI code for a(48)=1486179696</a> %F A298076 a(n)^n == a(n) mod n. %e A298076 a(10) = 10, because (10^10 - 1)/9 = 1111111111 = 11*41*271*9091 and all the prime factors p == 1 (mod 10), so all divisors d == 1 (mod 10). %p A298076 g:= t -> convert(select(type,map(s -> s[1], ifactors(t,easy)[2]),integer),set): %p A298076 F:= proc(n) local b,C,B,k,bb,Cb, easyf, c; uses numtheory; %p A298076 if isprime(n) then return 2 fi; %p A298076 C:= {seq(unapply(cyclotomic(m,t),t), m=divisors(n) minus {1})}; %p A298076 B:= select(t -> C(t) mod n = {1}, [$0..n-1]); %p A298076 for k from 0 do %p A298076 for bb in B do %p A298076 b:= k*n+bb; %p A298076 if b < 2 then next fi; %p A298076 Cb:= remove(isprime,C(b)); %p A298076 if Cb = {} then return b fi; %p A298076 easyf:= map(g, Cb) mod n; %p A298076 if not(`union`(op(easyf)) subset {1}) then next fi; %p A298076 if andmap(c -> factorset(c) mod n = {1}, Cb) then return b fi %p A298076 od %p A298076 od %p A298076 end proc: %p A298076 2, seq(F(n),n=2..30); %t A298076 {2}~Join~Table[Block[{k = 2}, While[Union@ Mod[Divisors[(k^n - 1)/(k - 1)], n] != {1}, k++]; k], {n, 2, 19}] (* _Michael De Vlieger_, Jan 11 2018 *) %o A298076 (PARI) A298076(n,f=if(bittest(n,0),1,n))={forstep(k=max(f,2),oo,f, fordiv(n,m,m>1&& Set(factor(polcyclo(m,k))[,1]%n)!=[1]&& next(2));return(k))} \\ Becomes slow for multiples of 5 and 12 beyond n = 34. - _M. F. Hasler_, Oct 14 2018 %Y A298076 Cf. A239452, A292559, A298310. %K A298076 nonn,hard,more %O A298076 1,1 %A A298076 _Robert Israel_ and _Thomas Ordowski_, Jan 11 2018 %E A298076 a(48)-a(56) from _Krzysztof Ziemak_, Jan 15 2018