cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298087 T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A298087 #4 Jan 12 2018 09:02:37
%S A298087 0,0,0,0,1,0,0,3,3,0,0,2,0,2,0,0,11,3,3,11,0,0,13,1,10,1,13,0,0,34,7,
%T A298087 28,28,7,34,0,0,65,18,76,154,76,18,65,0,0,123,52,213,520,520,213,52,
%U A298087 123,0,0,266,144,645,1574,2767,1574,645,144,266,0,0,499,405,1852,7204,11202
%N A298087 T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
%C A298087 Table starts
%C A298087 .0...0...0....0.....0......0.......0........0.........0..........0...........0
%C A298087 .0...1...3....2....11.....13......34.......65.......123........266.........499
%C A298087 .0...3...0....3.....1......7......18.......52.......144........405........1124
%C A298087 .0...2...3...10....28.....76.....213......645......1852.......5642.......17016
%C A298087 .0..11...1...28...154....520....1574.....7204.....28790.....105055......437163
%C A298087 .0..13...7...76...520...2767...11202....66148....385999....2040394....11280309
%C A298087 .0..34..18..213..1574..11202...65218...479206...3481050...24695892...177272585
%C A298087 .0..65..52..645..7204..66148..479206..4883926..46039875..420410890..3947485108
%C A298087 .0.123.144.1852.28790.385999.3481050.46039875.603770100.7267200831.90210295443
%H A298087 R. H. Hardin, <a href="/A298087/b298087.txt">Table of n, a(n) for n = 1..219</a>
%F A298087 Empirical for column k:
%F A298087 k=1: a(n) = a(n-1)
%F A298087 k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
%F A298087 k=3: [order 16] for n>17
%F A298087 k=4: [order 57] for n>58
%e A298087 Some solutions for n=7 k=4
%e A298087 ..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
%e A298087 ..0..1..0..1. .0..1..0..1. .1..0..1..1. .0..1..0..1. .0..1..1..0
%e A298087 ..1..1..0..1. .1..0..0..1. .1..1..1..1. .1..0..1..0. .1..0..1..0
%e A298087 ..0..0..1..1. .0..1..0..1. .0..0..1..1. .1..0..1..0. .1..0..1..0
%e A298087 ..0..0..0..0. .0..1..1..1. .0..1..0..0. .1..0..1..0. .1..0..1..0
%e A298087 ..0..0..1..0. .1..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
%e A298087 ..0..0..1..1. .1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
%Y A298087 Column 2 is A297870.
%K A298087 nonn,tabl
%O A298087 1,8
%A A298087 _R. H. Hardin_, Jan 12 2018