A298082
Number of nX3 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 3, 0, 3, 1, 7, 18, 52, 144, 405, 1124, 3113, 8688, 24346, 68385, 192524, 542537, 1529960, 4316175, 12178973, 34370746, 97008377, 273813995, 772895361, 2181712563, 6158599574, 17384869895, 49075425772, 138534755824, 391070202040
Offset: 1
Some solutions for n=7
..0..0..1. .0..0..1. .0..1..1. .0..0..0. .0..0..1. .0..1..1. .0..0..0
..0..1..1. .0..1..1. .0..0..1. .1..0..1. .0..1..1. .0..0..1. .1..0..1
..0..1..0. .0..1..0. .1..0..1. .1..1..1. .0..1..0. .1..0..1. .1..1..1
..0..0..0. .1..0..0. .1..1..1. .1..0..1. .0..0..0. .1..1..0. .1..0..1
..0..1..0. .1..1..1. .1..0..1. .0..0..0. .0..1..0. .0..0..0. .0..0..0
..0..1..1. .1..0..1. .0..0..1. .1..1..1. .1..1..0. .0..1..0. .0..1..0
..0..0..1. .0..0..0. .0..1..1. .1..1..1. .1..0..0. .1..1..1. .1..1..1
A298083
Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 2, 3, 10, 28, 76, 213, 645, 1852, 5642, 17016, 51810, 158290, 484347, 1484262, 4552873, 13976949, 42918852, 131843755, 405082273, 1244758709, 3825355448, 11756644688, 36133929611, 111060564589, 341360933527, 1049237831619
Offset: 1
Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..1..1. .0..1..0..1. .0..1..1..0. .0..1..1..0. .0..1..0..1
..1..1..1..1. .0..1..0..1. .1..1..0..1. .1..0..1..0. .0..1..0..1
..1..0..1..1. .1..0..0..1. .0..0..0..1. .1..0..1..0. .0..0..1..1
..0..1..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..1..1..0. .1..0..0..1. .1..0..0..1
..0..0..1..1. .0..0..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
A298084
Number of nX5 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 11, 1, 28, 154, 520, 1574, 7204, 28790, 105055, 437163, 1792603, 6981116, 28580319, 115795593, 464405679, 1883192839, 7625910371, 30781567549, 124586304213, 504301473498, 2038932788749, 8250005089404, 33384996732923
Offset: 1
Some solutions for n=7
..0..0..1..0..0. .0..0..1..0..0. .0..0..0..0..0. .0..0..0..1..1
..0..0..1..1..0. .0..1..0..1..0. .0..0..0..0..0. .0..1..1..0..1
..1..1..1..1..1. .1..0..0..0..1. .1..1..0..1..1. .0..1..0..0..1
..1..0..1..0..1. .1..0..0..0..1. .1..0..0..1..0. .0..0..1..1..1
..0..0..0..0..1. .0..1..0..1..0. .0..0..0..0..0. .1..1..1..1..0
..0..1..0..1..1. .1..0..0..1..0. .1..0..0..1..1. .0..1..1..0..0
..1..1..0..0..1. .1..1..1..0..0. .1..1..0..1..1. .0..0..1..1..0
A298085
Number of n X 6 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 13, 7, 76, 520, 2767, 11202, 66148, 385999, 2040394, 11280309, 63669582, 352938921, 1954934444, 10928716512, 60920261087, 339016489892, 1890631777955, 10543750377805, 58766637746893, 327645644514925, 1827099377713191
Offset: 1
Some solutions for n=7
..0..0..1..1..1..1. .0..0..1..1..1..1. .0..0..0..0..0..1. .0..1..1..1..0..0
..0..1..0..0..0..1. .0..1..0..0..0..1. .0..1..1..0..1..1. .0..0..1..0..1..0
..0..1..0..1..1..0. .0..1..1..0..1..0. .0..1..0..0..0..0. .0..1..1..1..0..1
..1..0..1..1..0..0. .0..1..0..0..0..1. .0..0..0..0..1..0. .1..1..1..1..0..1
..1..1..1..1..1..1. .0..0..0..0..1..0. .1..1..0..1..1..0. .1..0..0..0..0..1
..1..0..1..1..0..1. .1..1..0..1..1..0. .0..1..0..0..1..0. .0..1..0..1..0..1
..0..0..0..1..0..0. .1..1..0..0..0..0. .0..0..1..1..0..0. .0..0..1..0..1..1
A298086
Number of nX7 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 34, 18, 213, 1574, 11202, 65218, 479206, 3481050, 24695892, 177272585, 1292781132, 9346339114, 67597407637, 490930663188, 3562917786488, 25842902976432, 187580825378770, 1361838171557890, 9885195460409937
Offset: 1
Some solutions for n=7
..0..0..0..0..0..0..0. .0..0..0..0..0..0..1. .0..0..1..1..0..1..1
..0..1..1..1..1..1..0. .0..1..1..1..0..1..1. .0..1..1..0..0..0..1
..1..0..1..0..0..1..0. .1..0..1..0..0..1..0. .1..1..1..1..1..1..0
..0..1..0..1..0..1..0. .1..0..0..0..0..0..0. .0..0..1..1..0..0..1
..0..0..1..1..0..1..0. .0..1..1..0..0..1..0. .0..0..1..0..1..1..0
..1..0..0..0..1..1..0. .0..0..1..1..0..1..1. .0..0..1..0..0..0..1
..1..1..1..1..1..0..0. .0..1..1..0..0..0..1. .0..0..1..1..1..1..1
A298081
Number of n X n 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 1, 0, 10, 154, 2767, 65218, 4883926, 603770100, 117856794865
Offset: 1
Some solutions for n=7
..0..0..0..0..1..0..0. .0..0..0..0..0..1..1. .0..0..1..1..1..1..1
..0..1..1..0..1..1..0. .0..1..1..1..1..0..1. .0..0..1..0..0..0..1
..1..0..0..1..1..1..1. .1..1..0..0..1..0..1. .1..1..1..1..0..1..0
..1..1..1..1..1..0..1. .0..1..1..0..0..1..1. .1..1..1..1..1..1..0
..0..1..1..1..0..1..0. .0..0..0..0..1..0..1. .0..0..0..1..0..0..1
..0..0..1..0..0..1..0. .1..0..0..1..0..1..0. .0..1..1..0..1..1..0
..0..1..1..1..1..0..0. .1..1..0..1..1..0..0. .1..1..0..0..0..0..0
Showing 1-6 of 6 results.
Comments