cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298082 Number of nX3 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 0, 3, 1, 7, 18, 52, 144, 405, 1124, 3113, 8688, 24346, 68385, 192524, 542537, 1529960, 4316175, 12178973, 34370746, 97008377, 273813995, 772895361, 2181712563, 6158599574, 17384869895, 49075425772, 138534755824, 391070202040
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Column 3 of A298087.

Examples

			Some solutions for n=7
..0..0..1. .0..0..1. .0..1..1. .0..0..0. .0..0..1. .0..1..1. .0..0..0
..0..1..1. .0..1..1. .0..0..1. .1..0..1. .0..1..1. .0..0..1. .1..0..1
..0..1..0. .0..1..0. .1..0..1. .1..1..1. .0..1..0. .1..0..1. .1..1..1
..0..0..0. .1..0..0. .1..1..1. .1..0..1. .0..0..0. .1..1..0. .1..0..1
..0..1..0. .1..1..1. .1..0..1. .0..0..0. .0..1..0. .0..0..0. .0..0..0
..0..1..1. .1..0..1. .0..0..1. .1..1..1. .1..1..0. .0..1..0. .0..1..0
..0..0..1. .0..0..0. .0..1..1. .1..1..1. .1..0..0. .1..1..1. .1..1..1
		

Crossrefs

Cf. A298087.

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3) -11*a(n-4) +a(n-5) +15*a(n-6) +7*a(n-7) +a(n-8) -24*a(n-9) -39*a(n-10) +13*a(n-11) +32*a(n-12) +8*a(n-13) +5*a(n-14) -2*a(n-15) -2*a(n-16) for n>17

A298083 Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 2, 3, 10, 28, 76, 213, 645, 1852, 5642, 17016, 51810, 158290, 484347, 1484262, 4552873, 13976949, 42918852, 131843755, 405082273, 1244758709, 3825355448, 11756644688, 36133929611, 111060564589, 341360933527, 1049237831619
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Column 4 of A298087.

Examples

			Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..1..1. .0..1..0..1. .0..1..1..0. .0..1..1..0. .0..1..0..1
..1..1..1..1. .0..1..0..1. .1..1..0..1. .1..0..1..0. .0..1..0..1
..1..0..1..1. .1..0..0..1. .0..0..0..1. .1..0..1..0. .0..0..1..1
..0..1..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..1..1..0. .1..0..0..1. .1..0..0..1
..0..0..1..1. .0..0..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
		

Crossrefs

Cf. A298087.

Formula

Empirical: a(n) = 5*a(n-1) -4*a(n-2) -28*a(n-4) +10*a(n-5) +35*a(n-6) +103*a(n-7) -31*a(n-8) +31*a(n-9) -383*a(n-10) +291*a(n-11) -598*a(n-12) -88*a(n-13) +16*a(n-14) -165*a(n-15) +1777*a(n-16) +1139*a(n-17) +1984*a(n-18) -2265*a(n-19) +1513*a(n-20) -2214*a(n-21) +6466*a(n-22) -9351*a(n-23) -128*a(n-24) -14148*a(n-25) -9460*a(n-26) -16824*a(n-27) +19925*a(n-28) +22443*a(n-29) +20906*a(n-30) +7763*a(n-31) +5741*a(n-32) -10077*a(n-33) +2720*a(n-34) +13550*a(n-35) -7017*a(n-36) -31393*a(n-37) -21978*a(n-38) +5034*a(n-39) +16547*a(n-40) +7238*a(n-41) -404*a(n-42) -6332*a(n-43) -2417*a(n-44) -5112*a(n-45) -816*a(n-46) -1724*a(n-47) +1953*a(n-48) +1176*a(n-49) +1643*a(n-50) -112*a(n-51) -110*a(n-52) -388*a(n-53) +15*a(n-54) -40*a(n-55) +26*a(n-56) +6*a(n-57) for n>58

A298084 Number of nX5 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 11, 1, 28, 154, 520, 1574, 7204, 28790, 105055, 437163, 1792603, 6981116, 28580319, 115795593, 464405679, 1883192839, 7625910371, 30781567549, 124586304213, 504301473498, 2038932788749, 8250005089404, 33384996732923
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Column 5 of A298087.

Examples

			Some solutions for n=7
..0..0..1..0..0. .0..0..1..0..0. .0..0..0..0..0. .0..0..0..1..1
..0..0..1..1..0. .0..1..0..1..0. .0..0..0..0..0. .0..1..1..0..1
..1..1..1..1..1. .1..0..0..0..1. .1..1..0..1..1. .0..1..0..0..1
..1..0..1..0..1. .1..0..0..0..1. .1..0..0..1..0. .0..0..1..1..1
..0..0..0..0..1. .0..1..0..1..0. .0..0..0..0..0. .1..1..1..1..0
..0..1..0..1..1. .1..0..0..1..0. .1..0..0..1..1. .0..1..1..0..0
..1..1..0..0..1. .1..1..1..0..0. .1..1..0..1..1. .0..0..1..1..0
		

Crossrefs

Cf. A298087.

A298085 Number of n X 6 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 13, 7, 76, 520, 2767, 11202, 66148, 385999, 2040394, 11280309, 63669582, 352938921, 1954934444, 10928716512, 60920261087, 339016489892, 1890631777955, 10543750377805, 58766637746893, 327645644514925, 1827099377713191
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Column 6 of A298087.

Examples

			Some solutions for n=7
..0..0..1..1..1..1. .0..0..1..1..1..1. .0..0..0..0..0..1. .0..1..1..1..0..0
..0..1..0..0..0..1. .0..1..0..0..0..1. .0..1..1..0..1..1. .0..0..1..0..1..0
..0..1..0..1..1..0. .0..1..1..0..1..0. .0..1..0..0..0..0. .0..1..1..1..0..1
..1..0..1..1..0..0. .0..1..0..0..0..1. .0..0..0..0..1..0. .1..1..1..1..0..1
..1..1..1..1..1..1. .0..0..0..0..1..0. .1..1..0..1..1..0. .1..0..0..0..0..1
..1..0..1..1..0..1. .1..1..0..1..1..0. .0..1..0..0..1..0. .0..1..0..1..0..1
..0..0..0..1..0..0. .1..1..0..0..0..0. .0..0..1..1..0..0. .0..0..1..0..1..1
		

Crossrefs

Cf. A298087.

A298086 Number of nX7 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 34, 18, 213, 1574, 11202, 65218, 479206, 3481050, 24695892, 177272585, 1292781132, 9346339114, 67597407637, 490930663188, 3562917786488, 25842902976432, 187580825378770, 1361838171557890, 9885195460409937
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Column 7 of A298087.

Examples

			Some solutions for n=7
..0..0..0..0..0..0..0. .0..0..0..0..0..0..1. .0..0..1..1..0..1..1
..0..1..1..1..1..1..0. .0..1..1..1..0..1..1. .0..1..1..0..0..0..1
..1..0..1..0..0..1..0. .1..0..1..0..0..1..0. .1..1..1..1..1..1..0
..0..1..0..1..0..1..0. .1..0..0..0..0..0..0. .0..0..1..1..0..0..1
..0..0..1..1..0..1..0. .0..1..1..0..0..1..0. .0..0..1..0..1..1..0
..1..0..0..0..1..1..0. .0..0..1..1..0..1..1. .0..0..1..0..0..0..1
..1..1..1..1..1..0..0. .0..1..1..0..0..0..1. .0..0..1..1..1..1..1
		

Crossrefs

Cf. A298087.

A298081 Number of n X n 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 10, 154, 2767, 65218, 4883926, 603770100, 117856794865
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Diagonal of A298087.

Examples

			Some solutions for n=7
..0..0..0..0..1..0..0. .0..0..0..0..0..1..1. .0..0..1..1..1..1..1
..0..1..1..0..1..1..0. .0..1..1..1..1..0..1. .0..0..1..0..0..0..1
..1..0..0..1..1..1..1. .1..1..0..0..1..0..1. .1..1..1..1..0..1..0
..1..1..1..1..1..0..1. .0..1..1..0..0..1..1. .1..1..1..1..1..1..0
..0..1..1..1..0..1..0. .0..0..0..0..1..0..1. .0..0..0..1..0..0..1
..0..0..1..0..0..1..0. .1..0..0..1..0..1..0. .0..1..1..0..1..1..0
..0..1..1..1..1..0..0. .1..1..0..1..1..0..0. .1..1..0..0..0..0..0
		

Crossrefs

Cf. A298087.
Showing 1-6 of 6 results.