This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298093 #4 Jan 12 2018 09:33:00 %S A298093 0,1,1,1,3,1,2,7,7,2,3,13,15,13,3,5,23,19,19,23,5,8,49,21,30,21,49,8, %T A298093 13,95,33,53,53,33,95,13,21,177,53,92,45,92,53,177,21,34,359,77,149, %U A298093 87,87,149,77,359,34,55,705,111,250,150,171,150,250,111,705,55,89,1351,171,426 %N A298093 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero. %C A298093 Table starts %C A298093 ..0...1...1...2...3...5...8..13..21...34...55...89..144...233...377...610...987 %C A298093 ..1...3...7..13..23..49..95.177.359..705.1351.2689.5303.10321.20423.40353.79223 %C A298093 ..1...7..15..19..21..33..53..77.111..171..269..415..643..1013..1605..2543..4041 %C A298093 ..2..13..19..30..53..92.149.250.426..809.1456.2602.4606..8096.14731.27112.49118 %C A298093 ..3..23..21..53..45..87.150.216.249..423..711..980.1560..2431..3368..5598..8655 %C A298093 ..5..49..33..92..87.171.203.328.484..782.1106.1905.2833..4428..7210.11516.17938 %C A298093 ..8..95..53.149.150.203.229.365.410..734..917.1484.2077..2943..4659..7326.10594 %C A298093 .13.177..77.250.216.328.365.417.593..783.1086.1490.1929..2529..3490..4795..6787 %C A298093 .21.359.111.426.249.484.410.593.822.1041.1437.2208.3116..4525..6831.10816.16439 %H A298093 R. H. Hardin, <a href="/A298093/b298093.txt">Table of n, a(n) for n = 1..1055</a> %F A298093 Empirical for column k: %F A298093 k=1: a(n) = a(n-1) +a(n-2) %F A298093 k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-3) -10*a(n-4) +4*a(n-5) for n>6 %F A298093 k=3: a(n) = 2*a(n-1) -a(n-4) -a(n-5) -a(n-6) +a(n-7) +a(n-8) for n>9 %F A298093 k=4: [order 35] for n>40 %F A298093 k=5: [order 82] for n>86 %e A298093 Some solutions for n=7 k=4 %e A298093 ..0..1..0..0. .0..1..0..0. .0..0..0..1. .0..1..0..1. .0..0..1..0 %e A298093 ..0..1..1..1. .1..0..1..1. .0..1..0..1. .0..1..0..1. .1..1..0..1 %e A298093 ..1..0..1..0. .0..1..0..1. .1..1..0..0. .0..1..0..1. .1..0..1..0 %e A298093 ..1..0..1..0. .1..0..1..1. .1..1..0..0. .1..1..1..0. .1..1..1..0 %e A298093 ..0..1..1..1. .0..1..0..0. .0..1..0..1. .0..0..1..0. .1..1..1..0 %e A298093 ..0..1..0..0. .1..0..1..0. .1..0..1..0. .1..1..0..1. .1..0..1..0 %e A298093 ..0..1..1..0. .1..0..0..0. .0..1..0..1. .1..0..1..0. .0..0..1..1 %Y A298093 Column 1 is A000045(n-1). %Y A298093 Column 2 is A297852. %Y A298093 Column 3 is A297853. %K A298093 nonn,tabl %O A298093 1,5 %A A298093 _R. H. Hardin_, Jan 12 2018