A298089
Number of nX4 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
2, 13, 19, 30, 53, 92, 149, 250, 426, 809, 1456, 2602, 4606, 8096, 14731, 27112, 49118, 88604, 159685, 288458, 526293, 960108, 1742179, 3159153, 5731030, 10414879, 18970871, 34518779, 62715041, 113954032, 207132787, 376765957, 685570021
Offset: 1
Some solutions for n=7
..0..0..1..1. .0..1..0..1. .0..0..1..1. .0..0..1..0. .0..0..1..0
..1..1..0..0. .1..0..1..1. .1..0..1..0. .1..1..0..1. .1..1..0..1
..0..0..0..1. .0..1..0..0. .1..1..1..0. .0..0..0..1. .1..0..1..0
..1..1..0..1. .0..1..1..1. .1..1..1..0. .1..0..1..0. .1..1..1..0
..0..0..1..0. .1..0..1..0. .1..0..1..0. .0..1..1..1. .1..1..1..0
..0..1..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..1..0
..0..0..0..1. .1..1..0..1. .0..0..1..0. .1..0..1..1. .0..0..1..1
A298090
Number of nX5 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
3, 23, 21, 53, 45, 87, 150, 216, 249, 423, 711, 980, 1560, 2431, 3368, 5598, 8655, 12707, 20146, 30825, 46191, 71375, 111256, 169061, 260564, 403605, 607501, 943194, 1456420, 2221340, 3434014, 5274975, 8066460, 12409799, 19138048, 29352378
Offset: 1
Some solutions for n=7
..0..1..0..1..0. .0..0..0..1..0. .0..1..0..1..0. .0..0..1..1..1
..1..0..1..0..1. .1..1..1..0..1. .0..0..1..0..0. .1..1..0..0..0
..0..1..0..1..0. .0..0..0..0..1. .1..1..0..1..1. .0..0..0..1..0
..0..1..1..1..0. .1..1..1..0..0. .0..1..1..1..0. .1..1..0..1..1
..0..1..1..1..0. .0..0..0..1..1. .1..0..0..0..1. .0..1..0..0..0
..0..1..0..1..0. .1..1..1..1..0. .0..0..1..0..0. .1..0..1..0..1
..1..1..0..1..1. .0..0..0..1..0. .1..1..0..1..1. .0..0..1..0..1
A298091
Number of nX6 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
5, 49, 33, 92, 87, 171, 203, 328, 484, 782, 1106, 1905, 2833, 4428, 7210, 11516, 17938, 28859, 46630, 73610, 118590, 191530, 307255, 494129, 797251, 1286394, 2075589, 3359029, 5437187, 8799802, 14259390, 23128238, 37531667, 60964288, 99077978
Offset: 1
Some solutions for n=7
..0..1..1..1..0..0. .0..1..0..1..0..1. .0..1..0..1..0..1. .0..1..0..1..0..1
..0..1..0..1..0..1. .0..1..0..1..1..0. .1..0..1..0..1..0. .1..0..1..0..1..0
..1..0..1..0..1..0. .1..0..0..0..0..1. .0..1..0..1..0..1. .0..1..0..1..0..1
..1..0..0..0..1..1. .1..0..1..1..0..0. .1..0..1..0..1..0. .0..1..1..1..0..0
..1..0..0..0..1..1. .1..0..0..0..1..1. .0..1..0..1..0..1. .0..1..1..1..0..0
..1..0..1..0..1..0. .0..0..1..1..1..0. .1..0..1..0..1..0. .0..1..0..1..0..1
..0..0..1..1..1..0. .1..1..0..0..1..0. .1..0..0..0..1..1. .1..0..1..0..1..0
A298092
Number of nX7 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
8, 95, 53, 149, 150, 203, 229, 365, 410, 734, 917, 1484, 2077, 2943, 4659, 7326, 10594, 16709, 24739, 37132, 60254, 95030, 143625, 222697, 342265, 533190, 851163, 1336970, 2070432, 3224282, 5018051, 7927851, 12585422, 19740586, 30869728
Offset: 1
Some solutions for n=7
..0..1..0..1..0..1..1. .0..1..1..1..0..0..0. .0..1..1..1..0..1..1
..0..1..0..1..0..1..0. .0..1..0..1..0..1..0. .0..1..0..1..0..1..0
..1..1..1..0..0..0..0. .1..1..0..0..0..1..1. .1..1..0..1..1..1..0
..0..0..1..0..1..1..1. .1..1..0..0..0..1..1. .1..1..0..1..1..1..0
..1..1..1..0..0..0..0. .0..1..0..1..0..1..0. .0..1..0..1..0..1..0
..0..1..0..1..0..1..0. .1..0..1..0..1..0..1. .0..1..1..0..1..0..1
..0..1..0..1..0..1..1. .0..0..1..1..1..0..0. .1..0..1..0..0..0..1
A298088
Number of n X n 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 3, 15, 30, 45, 171, 229, 417, 822, 1359, 1993, 5049, 3669, 7878, 33158, 16734, 37752, 734240, 160344, 389218, 50665319, 1735920, 6661033
Offset: 1
Some solutions for n=7
..0..0..1..0..1..0..1. .0..0..1..0..0..1..1. .0..1..1..0..0..0..0
..1..1..0..1..0..1..0. .1..0..1..1..1..0..0. .1..0..0..1..1..1..1
..1..0..1..0..1..0..1. .1..1..1..0..0..0..1. .0..1..0..0..0..0..0
..1..1..1..0..0..0..1. .0..0..0..1..1..0..1. .0..1..0..1..1..1..1
..1..1..1..0..0..0..1. .1..1..1..1..0..0..1. .0..1..0..0..0..0..0
..1..0..1..0..1..0..1. .0..0..0..1..0..0..1. .1..0..0..1..1..1..1
..0..0..1..1..1..0..0. .1..1..1..0..1..1..0. .0..1..1..0..0..0..0
Showing 1-5 of 5 results.
Comments